Wood Laminated Composite Poles

Cheng Piao

Louisiana Forest Product Lab School of Renewable Natural Resources Louisiana State University

Utility Poles

Wood Utility Pole Processing

Why Wood Utility Poles

- Produced from a renewable natural resource
- A cost-effective choice
- Easily climbed
- Easily machined

Species of Wood Utility Poles

Wood utility poles for electrical distribution and telecommunications are manufactured from Red Pine, Jack Pine, Yellow Pine, Lodgepole Pine, Fir and Cedar, in accordance with CSA O15, ANSI 05 and many other international standards

Wood Laminated Composite Poles

- Hollow poles that have polygonal shapes
- Composed of trapezoid wood strips
- Bonded with synthetic resin

Why Wood Composite Poles

- Sufficient strength
- More cost-effective
- Light weight
- Freedom in sizes and shapes
- Environment considerations

Objectives

- Properties of wood composite poles
- Theoretical model development
- Finite element model development

Contents

- Experimental Study
- Theoretical Analysis
- Finite Element Analysis

Experimental Study

Components of Composite Poles

Materials

Southern Yellow Pine

Resorcinol-Phenol-Formaldehyde (RPF) Resin

Experimental Design

Reduced-size Composite Poles

Diameter: 3 in.

Length: 48 in.

Strip Number: 6 9 12

Strip Thickness: 0.4 0.6 0.8 1.0 in.

Experimental Design (Cont.)

Full-Size Composite Poles

Diameter: 4 in.

Length: 20 ft.

Strip Number: 9 12

Strip Thickness: 0.75 1.125 1.5 in.

Methods

Processing of Full-Size Poles

Testing of Reduced-Size Poles

Testing of Full-Size Poles

Testing of Shear Strength

MOR of Composite Poles

MOE of Composite Poles

Glue-Line Shear in the Dry Condition

Glue-Line Shear in the Wet Condition

Wood Breakage in the Dry Condition

Wood Breakage in the Wet Condition

Conclusions

 Strip thickness positively affects maximum stress and negatively affects glue-line shear strength. Strip thickness was not correlated with the Young's modulus.

Conclusions (cont.)

 Maximum stress decreased, and Young's modulus increased with strip number. Strip number had no effects on glue-line shear strength.

Conclusions (cont.)

 The boiling treatment resulted in reduction in shear strength and increased wood failure. Thinner strips lose more shear strength after the treatment.

Conclusions (cont.)

 Young's modulus of reduced-size composite poles was inferior to that of solid poles, whereas Young's modulus of full-size poles was superior to solid poles.

Theoretical Analysis

Loading system and shear and moment distributions

Normal and Shear Stresses

 $\int_{a}^{R} z dA$ = VQdM 1 τ_{xy} Ib dxbI z

Normal and Shear Strains

$$\varepsilon_x = \frac{du_x}{dx} = -z \frac{d^2 w}{dx^2}$$

$$\gamma_{xy} = \frac{\tau_{xy}}{G}$$

Strain Energy Functions

$$W_{\sigma} = \frac{1}{2}\sigma_x \varepsilon_x = \frac{1}{2}E\varepsilon_x^2 = \frac{1}{2}E(\frac{d^2w}{dx^2})^2 z^2$$

$$W_{\tau} = \frac{1}{2} \frac{V^2 Q^2}{GI^2 b^2} = \frac{1}{2} \frac{E^2 Q^2}{Gb^2} (\frac{d^3 w}{dx^3})^2$$

Normal and Shear Strain Energies

$$U_{\sigma} = \frac{EI}{2} \int_0^L \left(\frac{d^2 w}{dx^2}\right)^2 dx$$

$$U_{\tau} = \frac{E^2}{2G} \int_0^L \left(\frac{d^3 w}{dx^3}\right)^2 dx \int_A \frac{Q^2}{b^2} dy dz = \frac{k_1 E^2}{2G} \int_0^L \left(\frac{d^3 w}{dx^3}\right)^2 dx$$
Glue-Line Effects

Glue-Line Energy

$$U_g = 2U_{AA'} + 4U_{BB'} + 4U_{CC'} + 2U_{DD'}$$
$$= k_6 \int_0^L (\frac{d^2 w}{dx^2})^2 dx + k_7 \int_0^L (\frac{d^3 w}{dx^3})^2 dx$$

$$k_{6} = E_{g}(I_{g1} + 2I_{g2} + 2I_{g3})$$

$$k_{7} = k_{5}(k_{1} + k_{2} + k_{3} + k_{4})$$

$$k_{5} = \frac{E_{g}^{2}}{2G_{g}}$$

$$k_{4} = 2 \iint_{A} \frac{Q_{g1}^{2}}{t^{2}I_{g1}} dA$$

$$k_{3} = 4 \iint_{A} \frac{Q_{g2}^{2}}{t^{2}I_{g2}} dA$$

$$k_{2} = 4 \iint_{A} \frac{Q_{g3}^{2}}{t^{2}I_{g3}} dA$$

$$k_{1} = 2 \iint_{A} \frac{Q_{g4}^{2}}{t^{2}I_{g4}} dA$$

External Energy

 $H = -\int_0^L p_0 w dx - P w(L)$

Total Potential Energy

$$\pi = U_{\sigma} + U_{\tau} + U_{g} + H$$
$$= k_{8} \int_{0}^{L} \left(\frac{d^{2}w}{dx^{2}}\right)^{2} dx + k_{9} \int_{0}^{L} \left(\frac{d^{3}w}{dx^{3}}\right)^{2} dx - \int_{0}^{L} p_{0} w dx - Pw(L)$$

$$k_{8} = \frac{1}{2}EI + k_{6}$$
$$k_{9} = \frac{k_{1}E^{2}}{2G} + k_{7}$$

Application of Minimum Potential Energy Theorem

$$\delta\pi = \frac{\partial\pi}{\partial x}dx = 0$$

$$k_8 \int_0^L 2 \frac{d^2 w}{dx^2} \delta(\frac{d^2 w}{dx^2}) dx + k_9 \int_0^L 2 \frac{d^3 w}{dx^3} \delta(\frac{d^3 w}{dx^3}) dx - \int_0^L p_0 \delta w dx - P \delta w(L) = 0$$

The Governing Differential Equation

 $k_9 \frac{d^6 w}{dx^6} + k_8 \frac{d^4 w}{dx^4} - \frac{p_0}{2} = 0$

Boundary Conditions

$$[k_9 \frac{d^5 w}{dx^5} - k_8 \frac{d^3 w}{dx^3})]_{x=L} = \frac{P}{2}$$

$$(k_8 \frac{d^2 w}{dx^2} - k_9 \frac{d^4 w}{dx^4})|_{x=L} = \mathbf{0}$$

$$k_{8} \frac{d^{3} w}{dx^{3}}|_{x=0} = 0$$

Solution

$$w = c_1 + c_2 x + c_3 x^2 + c_4 x^3 + \frac{1}{48k_8} p_0 x^4 + c_5 e^{k_{10}x} + c_6 e^{-k_{10}x}$$

$$k_{10} = \sqrt{\frac{k_8}{k_9}}$$

High-order differential equation: deflection of reduced-size poles

High-order differential equation: Deflection of full-size poles

Comparison between high-order differential equation and Timoshenko methods: reduced-size poles

Comparison between high-order differential equation and Timoshenko methods: full-size poles

Shear Effects on Deflection

Deflection Comparison between Experiment Results and Theoretical Models

Stress Distribution

Conclusions of Theoretical Analysis

- A theoretical model was developed
- The high-order differential model was more accurate than the Timoshenko model in the prediction of full-size poles

Conclusions of Theoretical Analysis (cont.)

- Shear deflection account for 1 to 2% of the total deflection for reduced-size composite poles, and 0.1 to 1% for fullsize composite poles
- Glue-line deflection accounted for 4% of the total deflection for reduced-size poles, and 5% for full-size composite poles

Finite Element Analysis

Discretization of Domain: Reduced-Size Poles

Discretization of Domain: Full-Size Poles

Element Numbering for A 12-Side Pole

Node Numbering for A 12-Side Pole

Element Numbering for 6-Side Pole

Deformation of A 12-Side Small Pole

Stress Distribution of A 12-Side Pole

Stress Distribution of A 12-Side Full-Size Pole

Strain Distribution of A 12-Side Full-Size Pole

FEM-Predicted Deflection of 12-Side Reduced-Size Composite Poles

FEM-Predicated Deflection of 12-Strip Full-Size Composite Poles

FEM-Predicted Maximum Stress of 12-Side Reduced-Size Composite Poles

FEM-Predicted Maximum Strain of 12-Side Reduced-Size Composite Poles

Deflection Comparison among Experimental, Theoretical, and FEM Values for 12-Side Reduced-Size Composite Poles

Strip Thickness (cm)

Conclusions

- The accuracy of the finite element results was first verified by the experiment data. The correlations are found to be good.
- The experimental values in deflection were 2 to 10 percent higher than the finite element ones. The maximum stress values show the same trend.

Conclusions (cont.)

- The finite element results were then compared to the results obtained from the theoretical study.
- The theoretical values were 1 to 5 percent higher than the finite elemental ones.
 Maximum stress values predicted by the finite element model were greater than those obtained from the theoretical study.

Conclusions (cont.)

 Maximum stress of composite poles in the cantilever test was in the parabolic areas on the top and bottom skins near the fixed end.
Deep Appreciations

- Dr. Shupe
- Dr. Hse
- Dr. Gopu
- Dr. DeHoop
- Ms. Pat
- Ms. Joann

Acknowledgement

- Mr. Xiaobo Li
- Mr. Yaojian Liu
- Mr. Dale
- Mr. Gerry

Good Memory of

• Dr. Choong

Thank You 7

9

