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Utility Poles




Wood Utility Pole Processing




Why Wood Utility Poles

Produced from a renewable natural

resource
A cost-effective choice
Easily climbed

Easily machined




Species of Wood Utility Poles

« Wood utility poles for
electrical distribution and
telecommunications are

manufactured from Red
Pine, Jack Pine, Yellow
Pine, Lodgepole Pine, Fir
and Cedar, in accordance
with CSA 015, ANSI 05 and
many other international
standards




Wood Laminated Composite Poles

 Hollow poles that have
polygonal shapes

« Composed of trapezoid
wood strips

« Bonded with synthetic
resin




Why Wood Composite Poles

)
Sufficient strength
More cost-effective

Light weight

Freedom in sizes and shapes

Environment considerations




Objectives

 Properties of wood composite poles
 Theoretical model development

* Finite element model development




Contents

 Experimental Study

 Theoretical Analysis

* Finite Element Analysis




Experimental Study




Components of Composite Poles




VEWHELS

e Southern Yellow Pine

 Resorcinol-Phenol-
Formaldehyde (RPF) Resin




Experimental Design

« Reduced-size Composite Poles

1 Diameter: 3 in.

d Length: 48 in.

d  Strip Number: 6 9 12

4 Strip Thickness: 0.4 0.6 0.8 1.0in.




Experimental Design (Cont.)

 Full-Size Composite Poles

J Diameter: 4 In.

d Length: 20 ft.

d Strip Number: 9 12

d Strip Thickness: 0.75 1.125 1.51in.




Methods




Processing of Full-Size Poles







Testing of Reduced-Size Poles




Testing of Full-Size Poles




Testing of Shear Strength




MOR of Composite Poles
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MOE of Composite Poles
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Glue-Line Shear in the Dry Condition
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Glue-Line Shear in the Wet Condition
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Wood Breakage in the Dry Condition
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Wood Breakage in the Wet Condition
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Conclusions

o Strip thickness positively affects
maximum stress and negatively affects
glue-line shear strength. Strip thickness
was not correlated with the Young’s
modulus.




Conclusions (cont.)

« Maximum stress decreased, and
Young’'s modulus increased with
strip number. Strip number had no
effects on glue-line shear strength.




Conclusions (cont.)

 The boiling treatment resulted In
reduction in shear strength and

Increased wood failure.

hinner

strips lose more shear strength after

the treatment.




Conclusions (cont.)

 Young’s modulus of reduced-size
composite poles was inferior to that
of solid poles, whereas Young’'s
modulus of full-size poles was
superior to solid poles.




Theoretical Analysis




Loading system and shear and
moment distributions

PL + 0.5p,L2




Normal and Shear Stresses




Normal and Shear Strains




Strain Energy Functions




Normal and Shear Strain Energies




Glue-Line Effects
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Glue-Line Energy

ke = Eg(1g1 + 21 5 +215)
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External Energy

H=- jOL pwdx — Pw(L)




Total Potential Energy

n=U,+U +U_+H
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Application of Minimum Potential
Energy Theorem

d*w d2 d*w _d°w
kfy 2570 9J'0L2—6(—)dx [ Podivdx — PAW(L) = 0




The Governing Differential Equation




Boundary Conditions




Solution
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High-order differential equation:

deflection of reduced-size poles
>
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High-order differential equation:
Deflection of full-size poles
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Comparison between high-order differential equation
and Timoshenko methods: reduced-size poles
)
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Comparison between high-order differential equation and

Timoshenko methods: full-size poles
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Shear Effects on Deflection
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Deflection Comparison between Experiment

Results and Theoretical Models
LA
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Stress Distribution
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Conclusions of Theoretical
Analysis

* A theoretical model was developed

 The high-order differential model was
more accurate than the Timoshenko

model in the prediction of full-size
poles




Conclusions of Theoretical
Analysis (cont.)

 Shear deflection account for 1 to 2% of the
total deflection for reduced-size
composite poles, and 0.1 to 1% for full-
Size composite poles

Glue-line deflection accounted for 4% of
the total deflection for reduced-size poles,
and 5% for full-size composite poles




Finite Element
Analysis
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Discretization of Domain:
Full-Size Poles
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Element Numbering for A 12-Side Pole
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Node Numbering for A 12-Side Pole
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Element Numbering for 6-Side Pole
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Deformation of A 12-Side Small Pole
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DISPTACEMENT ANSYS
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Stress Distribution of A 12-Side Pole
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Stress Distribution of A 12-Side Full-
Size Pole
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Strain Distribution of A 12-Side Full-
Size Pole
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FEM-Predicted Deflection of 12-Side

Reduced-Size Composite Poles
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FEM-Predicated Deflection of 12-Strip

Full-Size Composite Poles
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FEM-Predicted Maximum Stress of 12-

Side Reduced-Size Composite Poles
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FEM-Predicted Maximum Strain of 12-
Side Reduced-Size Composite Poles
LA

— 25cm — 20cm — 1.5cm 1.0cm

~
&)
>
o
§=
©
1S
)
P
@)
1S
2
=

40 60
Nodes Starting Away from Support




Deflection Comparison among Experimental,
Theoretical, and FEM Values for 12-Side

Reduced-Size Composite Poles
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Conclusions

« The accuracy of the finite element results
was first verified by the experiment data.
The correlations are found to be good.

The experimental values in deflection were
2 to 10 percent higher than the finite
element ones. The maximum stress
values show the same trend.




Conclusions (cont.)

 The finite element results were then
compared to the results obtained from the
theoretical study.

The theoretical values were 1 to 5 percent
higher than the finite elemental ones.
Maximum stress values predicted by the
finite element model were greater than
those obtained from the theoretical study.




Conclusions (cont.)

e Maximum stress of composite poles
In the cantilever test was in the
parabolic areas on the top and
bottom skins near the fixed end.
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