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Utility Poles



Wood Utility Pole Processing



Why Wood Utility Poles

• Produced from a renewable natural 

resource

• A cost-effective choice

• Easily climbed

• Easily machined



Species of Wood Utility Poles

• Wood utility poles for 
electrical distribution and 
telecommunications are 
manufactured from Red 
Pine, Jack Pine, Yellow 
Pine, Lodgepole Pine, Fir 
and Cedar, in accordance 
with CSA O15, ANSI 05 and 
many other international 
standards



Wood Laminated Composite Poles

• Hollow poles that have 
polygonal shapes

• Composed of trapezoid 
wood strips

• Bonded with synthetic 
resin
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Why Wood Composite Poles

• Sufficient strength

• More cost-effective

• Light weight

• Freedom in sizes and shapes

• Environment considerations



Objectives

• Properties of wood composite poles

• Theoretical model development

• Finite element model development
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Experimental Study
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Materials

• Southern Yellow Pine

• Resorcinol-Phenol-
Formaldehyde (RPF) Resin 



Experimental Design

• Reduced-size Composite Poles

� Diameter: 3 in.

� Length: 48 in.

� Strip Number: 6   9   12

� Strip Thickness: 0.4   0.6 0.8 1.0 in.



Experimental Design (Cont.)

• Full-Size Composite Poles

� Diameter: 4 in.

� Length: 20 ft.

� Strip Number: 9   12 

� Strip Thickness: 0.75   1.125   1.5 in. 



Methods



Processing of Full-Size Poles





Testing of Reduced-Size Poles



Testing of Full-Size Poles



Testing of Shear Strength



MOR of Composite Poles
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Glue-Line Shear in the Dry Condition



Glue-Line Shear in the Wet Condition
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Wood Breakage in the Dry Condition
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Wood Breakage in the Wet Condition
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Conclusions

• Strip thickness positively affects 
maximum stress and negatively affects 
glue-line shear strength. Strip thickness 
was not correlated with the Young’s 
modulus.



Conclusions (cont.)

• Maximum stress decreased, and 
Young’s modulus increased with 
strip number. Strip number had no 
effects on glue-line shear strength.



Conclusions (cont.)

• The boiling treatment resulted in 
reduction in shear strength and 
increased wood failure. Thinner 
strips lose more shear strength after 
the treatment.



Conclusions (cont.)

• Young’s modulus of reduced-size 
composite poles was inferior to that 
of solid poles, whereas Young’s 
modulus of full-size poles was 
superior to solid poles.



Theoretical Analysis
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Normal and Shear Stresses
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Normal and Shear Strains
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Strain Energy Functions
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Normal and Shear Strain Energies
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Glue-Line Effects
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Glue-Line Energy
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External Energy
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Total Potential Energy
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Application of Minimum Potential 
Energy Theorem
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The Governing Differential Equation
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Boundary Conditions
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High-order differential equation:
deflection of reduced-size poles
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High-order differential equation:
Deflection of full-size poles
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Comparison between high-order differential equation 
and Timoshenko methods: reduced-size poles
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Comparison between high-order differential equation and 
Timoshenko methods: full-size poles
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Shear Effects on Deflection
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Deflection Comparison between Experiment 
Results and Theoretical Models
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Stress Distribution
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Conclusions of Theoretical 
Analysis

• A theoretical model was developed

• The high-order differential model was 
more accurate than the Timoshenko 
model in the prediction of full-size 
poles



Conclusions of Theoretical 
Analysis (cont.)

• Shear deflection account for 1 to 2% of the 
total deflection for reduced-size 
composite poles, and 0.1 to 1% for full-
size composite poles

• Glue-line deflection accounted for 4% of 
the total deflection for reduced-size poles, 
and 5% for full-size composite poles



Finite Element 
Analysis



Discretization of Domain: 
Reduced-Size Poles



Discretization of Domain: 
Full-Size Poles



Element Numbering for A 12-Side Pole



Node Numbering for A 12-Side Pole



Element Numbering for 6-Side Pole



Deformation of A 12-Side Small Pole





Stress Distribution of A 12-Side Pole



Stress Distribution of A 12-Side Full-
Size Pole



Strain Distribution of A 12-Side Full-
Size Pole



FEM-Predicted Deflection of 12-Side 
Reduced-Size Composite  Poles
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FEM-Predicated Deflection of 12-Strip 
Full-Size Composite Poles
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FEM-Predicted Maximum Stress of 12-
Side Reduced-Size Composite Poles
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FEM-Predicted Maximum Strain of 12-
Side Reduced-Size Composite Poles
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Deflection Comparison among Experimental, 
Theoretical, and FEM Values for 12-Side 
Reduced-Size Composite Poles
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Conclusions

• The accuracy of the finite element results 
was first verified by the experiment data.  
The correlations are found to be good.  

• The experimental values in deflection were 
2 to 10 percent higher than the finite 
element ones.  The maximum stress 
values show the same trend.



Conclusions (cont.)

• The finite element results were then 
compared to the results obtained from the 
theoretical study.  

• The theoretical values were 1 to 5 percent 
higher than the finite elemental ones.  
Maximum stress values predicted by the 
finite element model were greater than 
those obtained from the theoretical study.



Conclusions (cont.)

• Maximum stress of composite poles 
in the cantilever test was in the 
parabolic areas on the top and 
bottom skins near the fixed end.
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