Technical Feasibility of Flakeboard Production from Recycled CCA-Treated Wood

Wei Li

Candidate of Master Degree of Science School of Renewable Natural Resources Louisiana State University June 10, 2002

OUTLINE

INTRODUCTION
OBJECTIVES
MATERIALS AND METHODS
RESULTS AND DISCUSSION
CONCLUSIONS
ACKNOWLEDGEMENTS

OBJECTIVES

To determine the effect of the ratio of recycled CCA-treated wood and untreated virgin wood on flakeboard panel properties.

To determine copper, chromium, and arsenic retention levels of out-of-service CCA-treated highway guardrails and flakeboard panels.

To evaluate the leaching performance of flakeboard panels made from five different ratios of recycled CCA-treated wood and untreated virgin wood.

MATERIALS AND METHODS

Guard Rails

Sawmill

Flowchart of Experimental Plan

Sample Groups

- 1. 100% CCA-treated flakes
- 2. 75% CCA-treated flakes : 25% untreated flakes
- 3. 50% CCA-treated flakes : 50% untreated flakes
- 4. 25% CCA-treated flakes : 75% untreated flakes
- 5. 100% untreated flakes

Panel Assembly

■ PF resin 4.5 % by weight. □ Temperature: 370 °F (188 °C). Hot Press Schedule: – 1,225 psi ---- 3 minutes. – 307 psi ---- 0.5 minute. – 62 psi ---- 0.5 minute. □ Panel size: 14" x 14" x 0.5". **Target density: 46 pcf.** Flake orientation: random. **Two replications.**

Tests and Analyses

Mechanical Properties: ✓ Modulus of Rupture (MOR) ✓ Modulus of Elasticity (MOE) ✓ Internal Bond (IB)

Chemical Properties: ✓ CCA Retention ✓ Leachability

Statistical Analyses :

✓ Analysis of Variance (ANOVA)
 ✓ Regression
 ✓ Group Comparison
 ✓ Variance proportion

Physical Properties:
✓ Thickness Swell (TS)
✓ Linear Expansion (LE)
✓ Water Absorption (WA)

Durability: ✓ ODVPS ✓ Decay Resistance

RESULTS AND DISCUSSION

Mechanical Properties

MOR

MOE

MOR – ODVPS

MOE – ODVPS

Contrast of MOR between Standard and ODVPS

Contrast of MOE between Standard and ODVPS

Bending Strength Reduction

Flakeboard with 100 % Untreated SYP (Group 5)

Flakeboard with 100 % CCA-treated Guard Rails (Group 1)

Group 1

Group 5

Internal Bond

Internal Bond – ODVPS

Contrast of IB between Standard and ODVPS

Internal Bond Reduction

Physical Properties

Physical Properties of Flakeboards

Treatment	Thickness	Density	Moisture
	(111.)	(pcr)	
Group 1	0.47	47.70	7.8
Group 2	0.47	47.21	7.6
Group 3	0.48	47.20	7.6
Group 4	0.48	47.21	7.3
Group 5	0.48	49.48	7.1

Thickness Swell

Linear Expansion

Water Absorption

Analysis of Variance (ANOVA)

Sources	Numerator DF	Denominator DF	TYPE III MS	F value	Pr>F
MOR	4	5	1052192	1.06	0.4254
MOE	4	5	583829	1.59	0.2518
MOR-ODVPS	4	5	1468313	1.27	0.3454
MOE-ODVPS	4	5	1531942	0.60	0.6739
IB	4	5	2299	8.94	<0.0001**
IB-ODVPS	4	5	1361	9.47	<0.0001**
Thickness swell	4	5	0.0033	4.46	0.0252*
Linear expansion	4	5	9.335E-7	1.05	0.4272
Water absorption	4	5	0.0038	1.10	0.4091

Regression Analysis

Linear regression

Source	Regression model	P-value for slope	R- square
Thickness swell	$y = 0.335 - 0.00065 \times t$	0.0209*	0.5067

Thickness Swell Regression Plot

Regression Analyses

Quadratic regression

Sources	Regression models	P-value for coefficients	R- square
IB	$y = 89.21 - 0.77 \times t + 0.0071 \times t^2$	t: 0.0328* t ² : 0.0388*	0.5015
IB- ODVPS	$y = 53.08 - 0.64 \times t + 0.0059 \times t^2$	t: 0.0775 t ² : 0.0864	0.3792

IB Regression Plot

Decay Resistance

Soil Block Decay Test Methodology

- Tests performed in accordance with AWPA E10-91.
- Sample dimensions were ¹/₂ in.³.
- White rot (*Trametes versicolor* (ATCC isolate 42462)) and brown rot (*Gloeophyllum trabeum* (ATCC isolate 11539)).
- 8 weeks for brown rot and 16 weeks for white rot.

Soil Decay Tests

Five experimental group samples

Control group samples

Analysis of Variance (ANOVA)

Sources	Numerator DF	Denominator DF	TYPE III MS	F value	Pr>F
Brown rot	6	63	1949	74.46	<0.0001**
White rot	6	63	40	19.78	<0.0001**

Chemical Analyses

CCA retention level of guard rails and flakeboards
 CCA leaching property of flakeboards

CCA Retention of Guard Rails

CCA Retention of Flakeboards

Leaching Test

CCA Leaching Tests of Flakeboards

Supplementary Experiments

Microscopic analyses
Wettability
Hot water solubility
Gel time and viscosity

SEM Pictures

CCA-treated flake of sapwood

SEM Picture

Untreated southern pine flake

Wettability Determination

Contact angles determined with PF resin at ambient room conditions.
Angle recorded within 5 seconds after introduction of resin to wood.
Flake conditions: air dry and oven dry.
Wood types: earlywood and latewood.

Contact Angles of Flakes with PF Resin

Flake conditions		Contact angle (°)			
	Wood types	Untreated southern pine	CCA-treated recycled southern pine		
Air dry	Earlywood	72.52 (10.09) ^a	93.50 (13.37)		
	Latewood	71.06 (10.23)	84.91 (10.39)		
Oven dry	Earlywood	42.40 (7.24)	64.32 (21.34)		
	Latewood	43.48 (6.58)	65.59 (23.53)		

^a Values in parentheses are standard deviations.

Hot Water Solubility

- Tests performed in accordance with ASTM D 1110-84.
- Five groups with same mixture ratios and resin content as experimental flakeboards. Two control groups.
- Wood particles were between 40 60 micron.
- PF resin blended with wood particles cured at 130°C, 20 min.

Hot Water Solubility

Group	Hot water solubility
1	6.17 (1.53) ^a
2	4.33 (1.26)
3	5.00 (0.50)
4	5.67 (0.58)
5	5.83 (1.61)
Untreated wood	5.00 (1.32)
CCA-treated wood	4.50 (0.50)

^a Values in parentheses are standard deviations.

Gel time of PF blended with wood particle

Viscosities of PF blended with wood particle

Contrast of Experimental Results and ANSI Standards

	MOR (psi)	MOE (psi)	IB (psi)	LE (%)
Grade M-1	1,595	250,200	58	0.35
Grade M-2	2,103	326,300	65	0.35
Group 1	4,441	672,600	84.8	0.32
Group 2	4,894	693,500	65.1	0.31
Group 3	4,743	700,400	74.4	0.26
Group 4	5,137	721,200	72.2	0.20
Group 5	5,803	773,000	89.3	0.27

CONCLUSIONS

As expected, most mechanical and physical properties improved as the percent of recycled treated wood in the furnish decreased.

As expected, decay resistance increased as the percent of recycled treated wood in the furnish increased.

CONCLUSIONS

 Flakeboard made from recycled CCAtreated wood is technically feasible.
 Mechanical and physical properties do not substantially decrease with as much as 50 percent recycled treated material in the furnish of the panels.

ACKNOWLEDGEMENT

Drs. Shupe, Hse, Marx, and Vlosky
American Wood Preservers Institute
Arch Wood Protection, Inc.
Arnold Forest Products Co., Shreveport, LA
Louisiana Dept. of Transportation and Development

Comments and Questions