Thermal/Mechanical Properties of Wood-PVC Composites – Effect of Maleation

J.Z. Lu, I. I. Negulescu, and Q. Wu Louisiana State University Baton Rouge, LA

Introduction

Maleation in wood-polymer composites helps create chemical bridges at the interface.

- Improving compatibility between polar wood and non-polar polymer
- Helping transfer stresses at the interface
- Improving interfacial adhesion strength

 Maleation influences mechanical and thermal properties of resultant composites.

Heat flow, heat capacity, and enthalpy
Glass transition
Moduli and bonding strength

Objectives

To investigate thermal/mechanical characteristics of maleated wood-PVC composites.

To study the relationship between measured properties and coupling agent performance in resultant composites.

Background

Thermal/Mechanical Analysis Techniques

Temperature-molecular Mass Diagram

Semi-polymers (e.g., PVC and Lignin)

Transition Temperatures

Glass Transition Temperature Tg

Stress-strain Relationship Under Dynamic (sinusoidal) Loading

<u>Dynamic Stress-strain</u> <u>Relationship</u>

Stress $\sigma(t)$ under a sinusoidal load:

Strain $\gamma(t)$ by a phase angle δ corresponding to the stress $\sigma(t)$:

Dynamic modulus E*:

Relationship among complex, storage, and loss moduli:

Phase angle δ :

 $\sigma(t) = \sigma_0 \sin(\omega t + \delta)$

 $\gamma(t) = \gamma_0 \sin(\omega t)$

$$E^*(\omega) = \frac{\sigma(t)}{\gamma(t)}$$

 $E^{*}(\omega) = E'(\omega) + iE''(\omega)$

 $\tan \delta = \frac{E''(\omega)}{E'(\omega)}$

Thermal/Mechanical Properties

Glass transition temperature T_g
 DSC and DMA
 Melting temperature T_m

- DSC

Heat flow (dQ/dt) and enthalpy (AH)

- DSC

Bonding moduli (E', E'', and E^*) and the phase angle (δ)

– DMA

Thermal stability (weight loss under heat)
 - TGA

Experimental

Materials

Wood Veneer - Yellow poplar (0.91 mm Thick)
PVC film - Clear (0.0762 mm Thick)
Maleated polypropylene (MAPP)

Epolene E-43 (Mw =9,100)
Epolene G-3015 (Mw =47,000)

Initiator - Benzyol peroxide
Solvent - Toluene

Sohxlet Extraction ASTM standard D1105-96. Wood specimens were extracted for 4 hours with two sets of solvents. Coupling Treatment Wood specimens were dipped in the coupling solutions of 0, 12.5, 25, and 50 g/L MAPP at 100°C for 5 min under a continuous stirring with a magnetic stirrer.

Wood Veneer under Sohxlet extraction

Manufacture of wood-PVC composites Pressure: 0.276 MPa Pressing procedure: Heating 3 min at 178°C and then cooling at 70°C for 1 min Shear strength measurement Shear tests followed the ASTM standards D3163 and D3165

Wood-PVC Laminates under Shear Testing

DMA (Seiko Instruments, Model DMS 110)

DMA Procedure - Using three cycles

			Temperature [°C]		Rate
Specimen	Test mode	Test cycle	Start	Stop	[°C/min]
		First heating	20	220	0.50
Wood	Bending	First cooling	220	30	0.25
		Second heating	30	220	0.50
		First heating	20	100	0.50
PVC	Bending	First cooling	100	30	0.25
		Second heating	30	100	0.50
		First heating	20	150	0.50
Woo-PVC	Bending	First cooling	150	30	0.25
composites		Second heating	30	150	0.50

TGA system (TA Instruments, Model TGA2950)

Procedure: Heating from 25°C to 600°C under a N₂ flux at a pressure of 8 KPa

DSC (TA Instruments, Model DSC2920)

Procedure

For interphase samples, heating from 25° C to 200° C under a N_2 flux at a pressure of 8 KPa

For modified wood veneer and wood-PVC composite samples, cooling at -10°C for a while and then heating up to 200°C in a N_2 flux

Summary Results on Thermal/Mechanical Properties

Material	E' (GPa) ^a	E" (GPa) ^a	Glass transition (°C) ^a	tanð ^a	Shear strength (MPa)	Enthalpy (J/g) ^b	TG at 600°C (%)	DTG _{max} (%/°C) ^c
PVC	5.73	0.44	76.1	0.39	-	0.81 @79.6°C	10.3	2.37 @257°C
Wood	10.43	0.41	67.2	0.05	-	21.69 @50.7°C	18.8	1.47 @356°C
Wood-PVC composites:								
0% MAPP	7.85	1.04	85.1	0.22	3.14	-	16.8	0.80 @266°C,
2.95% E-43	7.96	0.97	85.9	0.22	2.90	-	17.9	0.65 @329°C 0.75 @270°C, 0.62 @340°C
4.12% E-43	9.45	1.23	83.0	0.24	3.03	15.95 @88.0°C	18.2	$0.69 @266^{\circ}C,$
6.83% E-43	9.16	1.15	82.6	0.23	3.32	-	16.5	0.67 @275°C, 0.63 @344°C
2.17% G-3015	7.08	0.8	85.5	0.23	2.90	-	16.5	0.72 @266°C,
3.64% G-3015	8.98	1.16	83.9	0.24	2.94	15.99 @81.8°C	15.4	0.75 @344°C 0.72 @258°C,
6.35% G-3015	8.56	1.09	84.3	0.24	3.61	-	17.0	0.71 @276°C, 0.58 @335°C

^a The value was measured in first heating at 1 Hz;

^b The value was measured at the glass transition;

^c Two maximum peaks were selected for wood-PVC composites.

DMA Results

Glass Transitions of Wood-PVC Composites

Influence of Frequency on E' and tan δ of Wood-PVC Composites with 6.83% E-43

Influence of MAPP Retention on E' and tan δ of Wood-PVC Composites (Freq = 1 Hz)

TGA Results

Influence of Maleation on Decomposition of Wood-PVC Composites by TG

Influence of Maleation on Decomposition of Wood-PVC Composites by DTG

Comparisons on DTG Decomposition of Wood-PVC Composites with and without Maleation

DSC Results

Heat Flow (dQ/dt) vs. Temperature For Wood-PVC Composites

Derivative DSC spectra for PVC, modified wood veneer, and wood-PVC composites

DSC Spectra of PVC-MAPP Interphases

Conclusions

- Maleation significantly influenced the thermal behavior of wood-PVC composites.
- E'and E* increased with MAPP retention and graft rate. However, tanδwas independent of retention and graft rate.
- Wood-PVC composites with MAPP had significant shifts in DMA, DSC, and TG/DTG spectra compared with those without MAPP.