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Many aboriginal communities look to forest resources for short- and long-term employment, adequate
timber for mills, an even flow of wood fiber for community stability, and financial returns for economic
diversification. We address these conflicting objectives using multiple-objective programming. We
show how compromise programming can be used to set bounds on fuzzy membership functions,
and illustrate the difference between crisp and fuzzy weighting of objectives. Economic development
outcomes obtained using compromise and fuzzy programming greatly improve upon those associated
with the even-flow of timber rule of thumb. Yet, timber extraction is an inadequate driver of economic
development in rural communities.
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In Canada, federal and provincial govern-
ments have historically promoted economic
development in rural regions via the exploita-
tion of natural resources. Forests played a
key role in that development and continue to
be looked upon to bring prosperity to some
300 forest-dependent communities, many of
which are aboriginal. Some 80% of First Na-
tion communities rely on forestry and related
businesses as their main economic activity
and source of earned income, and residents
have few employment options other than those
linked directly or indirectly to natural resource
exploitation (Natural Resources Canada 2006,
p. 54). Provincial governments set the over-
arching policy related to forest management
as they own some 95% of exploitable tim-
ber resources. As a management tool, they
have adopted even-flow of timber as the pri-
mary mechanism for implementing stability
of fiber for mills, employment in forest-level
activities (community stability), and govern-
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ment revenues. Because even-flow harvests are
based on mean annual timber growth over
some planning horizon, environmental sus-
tainability is also addressed.

There are problems with this approach to
economic development, however. First, forests
are more than just a driver of development
as they also provide nontimber forest ameni-
ties that may be incompatible with timber
exploitation. Second, even flow ignores the
business cycle as too much timber is har-
vested when prices are low and too little is
harvested when prices are high. Finally, the
forest resource base may simply be inade-
quate, with resource constraints too onerous
to satisfy development needs. Resource de-
pendent communities may need to trade off
short- versus long-term employment depend-
ing on the timing of harvests and investments
in growing stock. Employment in forestry may
need to be sacrificed to gain higher resource
rents, which can then be invested to diversify
the economy (or help people move to larger
centers with greater employment opportuni-
ties). Essentially, forest management policies
require the balancing of complex environmen-
tal, employment and economic development
objectives over long periods of time, because
decisions made today affect the options avail-
able in the future. In this regard, the current
policy of ensuring a stable timber supply may
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be an effective rule-of-thumb policy for bal-
ancing environmental, employment and other
objectives. But is it nonoptimal, leading to un-
acceptable trade-offs?

To address this issue, we develop a decision
framework for balancing conflicting objectives
that employs compromise and fuzzy program-
ming, and compares results from these ap-
proaches with those of the current policy of
maintaining an even-flow of timber to mills.
While compromise and fuzzy programming
have separately been applied to a variety
of problems, Duval and Featherstone (2002)
were to our knowledge the first to employ both
in an agricultural setting with an application to
a portfolio selection problem with two objec-
tives, maximizing return and minimizing risk.
Duval and Featherstone compared compro-
mise programming and fuzzy programming to
a traditional mean-variance (EV) approach. A
direct comparison of models is possible in the
portfolio selection case because any solution
to the two-objective optimization problem de-
pends only on one weighting coefficient and
can be graphically presented.1 The economic
development problem for a forest-dependent
community involves more than two objectives,
there is no straightforward equivalent of a risk
aversion parameter as in EV analysis, and elic-
itation of objective weights is difficult. These
issues pose particular challenges for multiple-
objective programming that we address in
the current study. Further, unlike Duval and
Featherstone, who used the results from single-
objective solutions to construct fuzzy mem-
bership functions, we employ the results of
compromise programming to construct fuzzy
membership functions. This novel approach re-
sults in solutions that balance trade-offs among
multiple objectives under uncertainty with-
out the explicit need to elicit risk attitudes
from decision makers (although some notion
of preferences among objectives would still be
required), while providing a higher degree of
satisfaction (comfort) with the resulting trade-
off.

In this article, we consider the opportu-
nities and obstacles that face an aboriginal
community in northern Alberta that strives
to support a growing population by tak-
ing on responsibilities related to “logging,

1 When the weights are fixed, a subset of Pareto solutions is gen-
erated by changing the risk parameter. When the risk parameter
is fixed, all solutions can be generated by varying the weight on
one of the objectives from 0 to 1, with the other weight adjusted
accordingly.

silviculture, and the provision of other forest
management services” (First Nations Forestry
Program 2007a, p. 7). The development chal-
lenge is to balance objectives so as to maintain
a viable and healthy community over the long
term. We proceed in the next two sections by
discussing the use of multiple-objective mod-
eling approaches in the context of a rural de-
velopment problem, and providing the pro-
gramming framework that we use to examine
possible development strategies for an abo-
riginal, forest-dependent community. We then
provide background information and data for
our application and our modeling results. We
end with some conclusions about both the de-
velopment problem and the use of our pro-
gramming tools.

Multiple-Objective Decision Models

Multiple-objective programming (MOP)
emerged in the early 1970s to deal with the si-
multaneous optimization of several objectives.
Because agricultural, resource management,
and ecological issues often require the satis-
faction of financial, social, and, importantly,
biological objectives that can only be consid-
ered incommensurable, MOP has increasingly
been applied by economists working in these
areas. Romero and Rehman (1987) reviewed
about 150 applications of multiple-objective
programming in natural resource manage-
ment, but the number of applications has
increased tremendously since their study.
The main problem that plagues MOP re-
mains to be resolved: the lack of a single
unified framework for optimizing over mul-
tiple objectives, so solution techniques vary
widely.

One way to solve a MOP problem is to con-
struct an aggregated objective function to be
optimized. Objectives are combined into a sin-
gle expression using fixed weights to represent
stakeholders’ relative importance of various
attributes in the utility function (Steuer 1986).
This approach has been used in agriculture
(Amador, Sumpsi, and Romero 1998; Gómez
Limón, Riesgo, and Arriaza 2004; Bazzani
2005) and forestry (Ananda and Herath
2005).

A psychologically appealing idea is to
seek solutions that minimize the distance be-
tween the attained levels of various objec-
tives and their targets (or most desirable
levels). This notion is the basis for multicri-
teria approaches, such as goal programming,
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compromise programming and fuzzy program-
ming, which differ in how they define targets
and distances in the objective space. Goal pro-
gramming, introduced by Charnes and Cooper
(1977), extends the method of linear program-
ming by setting targets (goals) in the objective
space and minimizing deviations from the pre-
set targets. It has been used in many areas of
natural resource management, including esti-
mation of optimal fleet size in fisheries (Pascoe
and Mardle 2001) and determination of trade-
offs between timber and carbon benefits in for-
est management (Diaz-Balteiro and Romero
2003).

In compromise programming, the best val-
ues obtained by single-objective optimization
are taken as targets; then, using a family of
L� distance metrics, the weighted distances
between realized objective values and tar-
gets is minimized (Yu 1973). Compromise
programming has been extensively used for
decision problems with two objectives. In agri-
culture, it has been used by Costa and Rehman
(2005) to analyze overgrazing in Brazil, and
by Duval and Featherstone (2002) to solve
a portfolio selection problem. Krcmar, van
Kooten, and Vertinsky (2005) used compro-
mise programming to generate different land-
use strategies that balanced slow and fast
carbon uptake, maintenance of structural di-
versity in an ecosystem, and net returns to
forestry and agriculture, and to examine the
associated trade-offs. They investigated more
than two objectives and, instead of relying on
weights to express the relative importance of
objectives, they employed compromise pro-
gramming with equal weights and two distance
metrics to represent the extreme risk-neutral
and risk-averse attitudes of decision makers.

Fuzzy programming is used in the multiob-
jective context when decision makers are un-
certain about targets and their attainment, and
objectives are best described linguistically. Un-
certain targets are defined in terms of fuzzy
numbers and a solution is found by maximiz-
ing the minimum membership value over all
objectives (Zimmermann 1978). For example,
in addition to finding an EV-equivalent so-
lution with compromise programming, Duval
and Featherstone (2002) solved the portfolio
selection problem using fuzzy programming
with the vague (imprecise) objectives “high re-
turns” and “low risk.” In forest management
applications, Hof (1993) used fuzzy program-
ming to demonstrate that large benefits can
be gained by relaxing the even-flow constraint
typical of sustained-yield policies.

Extracting stakeholder preferences among
objectives is the most difficult aspect of the
multiattribute utility and the goal and compro-
mise programming approaches. A study that
evaluated five weighting methods indicated
that users are uncomfortable expressing their
preferences in a numerical form (Hajkowicz,
Mcdonald, and Smith 2000). Elicitation of
weights becomes more difficult with more ob-
jectives, and, when the definition of an objec-
tive and its realization are unclear, objectives
are best described as vague or imprecise. In
this article, we do not elicit decision makers’
preferences for objectives directly, but we do
consider the sensitivity of our results to differ-
ent weighting schemes.

We propose a framework that combines
compromise and fuzzy programming, extend-
ing previous work by Krcmar, van Kooten,
and Vertinsky (2005) by adding a fuzzy pro-
gramming component to generate a middle
strategy between the extreme risk-neutral and
risk-averse outcomes of compromise program-
ming (Ballestero 1997). For the extreme risk-
neutral compromise solution, all objectives
and regrets (deviations of realized objectives
from targets) are treated equally and simulta-
neously; at the risk-averse extreme, the com-
promise solution emphasizes only the criterion
with the largest regret by minimizing that re-
gret (Freimer and Yu 1976). The Pareto opti-
mal risk neutral and risk averse solutions are
used to construct fuzzy membership functions
that are then used in fuzzy programming to find
the middle ground strategy and, importantly,
the degree to which the decision maker might
be satisfied with this final compromise.

In contrast to Duval and Featherstone
(2002), we have more than two objectives
and use compromise programming to identify
bounds for constructing the fuzzy sets. Further,
since we are interested in determining the de-
velopment possibilities for a forest-dependent
community and what sacrifices are available
to them, we compare the results from compro-
mise and fuzzy programming with those of the
current even-flow-of-timber policy, which is a
rule-of-thumb that governments employ to ad-
dress compromise over objectives.

Model Formulation: Solving
the MOP Problem

A feasible forest management strategy x ∈
F is evaluated in terms of the objective val-
ues (strategy outcomes) f q(x), q ∈ Q, where
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Q is the set of applicable objectives. Unlike
single-objective programming, where there is
a feasible strategy that optimizes the objective
function, there is no single feasible strategy
that simultaneously optimizes all of the objec-
tives when they are in conflict. Rather, for each
distance metric (see below), compromise pro-
gramming provides a Pareto optimal solution,
so that there is no other feasible strategy that
would improve any objective value without
worsening other objective values. There are
thus an infinite number of strategies and cor-
responding objective vectors that are Pareto
optimal (Yu 1974; Blasco et al. 1999).

Specification of a preference structure over
objectives is an important aspect in the selec-
tion of preferred strategies. The usual way is to
elicit from decision makers a weighting scheme
that reflects their ordering over objectives; in
addition to the practical matter of how to elicit
such weights, discovering weights is especially
difficult when decision makers cannot readily
be identified or are unwilling to reveal their
preferences (the situation for our case study).2
As a result, we employ equal weights for each
of the objectives but conduct sensitivity analy-
sis with respect to the weighting scheme.

It is much easier to determine potential tar-
gets, which is done by finding the respective
maximum or minimum value of each objec-
tive under single-objective optimization. Re-
grets are then defined as a measure of the
weighted distance between achieved objec-
tives and their targets, with the compromise
solution minimizing the overall distance. The
problem is that there are different distance
metrics according to how much emphasis is
placed on “group criteria” versus an individ-
ual criterion. While it is possible to determine
all of the compromise solutions by varying the
balancing parameter (�) between 1 (empha-
size “group criteria”) and ∞ (focus on a sin-
gle criterion), as indicated in the next section,
our innovation involves the use of fuzzy pro-
gramming to identify a middle strategy and the
decision maker’s level of satisfaction with its
attainment. This combined compromise-fuzzy
programming approach is then applied to the
conflicting development objectives of a forest-
dependent aboriginal community.

2 In a government-sponsored study of sustainable forest man-
agement, and after five telephone calls to leaders in aboriginal
communities, researchers could only get 19 out of 46 communities
contacted to respond to a survey (First Nations Forestry Program
2007a, p. 35). Our experience was similar, with aboriginal leaders
simply refusing to provide any information on preferences.

Compromise Programming

Compromise programming solves MOP prob-
lems by specifying a family of L� metrics that
evaluate distances between points in the ob-
jectives space (Yu 1973):

L�(w, x) =
{∑

q∈Q

[wqdq(x)]�

}1/�
, 1 ≤ � ≤ ∞.

(1)

Here, wq > 0,
∑

q∈Q wq = 1, are weights repre-
senting the relative importance of objectives,

and dq(x) = f ∗
q − fq (x)
f ∗
q − fq∗

, q ∈ Q , are the normalized
distances between the current objective val-
ues and the corresponding best (maximum or
minimum) values. The current objective value
is denoted f q(x), while f ∗

q represents the best
possible and f q∗ the worst possible value of
the objective q. While f ∗

q is found by single-
objective optimization, finding f q∗ may be dif-
ficult as single-objective optimization using the
negative of the objective (so as to determine a
worst value) may lead to an unbounded solu-
tion. Therefore, f q∗ is often approximated us-
ing a suitable lower bound, such as zero when
an objective can only take nonnegative values.
A solution x to the program

(CP�, w) min
x∈F

L�(w, x)

is called the weighted compromise solution to
the MOP problem with respect to w and �.

Ballestero (1997) established a link between
the balancing parameter � in compromise pro-
gramming and a decision maker’s risk atti-
tude. A decision maker’s attitude toward at-
tainment of multiple objectives is represented
by the choice of the distance parameter � (1 ≤
� ≤ ∞): � = 1 represents an “extremely risk-
neutral” decision maker who seeks to real-
ize all criteria (emphasis on “group criteria”),
while � = ∞ represents a decision maker with
zero risk tolerance focusing on a single crite-
rion (minimizing the maximum regret). The
distance parameter � should not be confused
with the Arrow-Pratt coefficient of risk aver-
sion (which relies on some ratio of the first and
second derivatives of the utility function with
respect to income); risk attitude in the current
context should not be confused with its use in
expected utility maximization.

For � = 1, the compromise programming
problem becomes:
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(CP1, w) min
x∈F

L1(w, x) = min
x∈F

∑
q∈Q

wqdq(x)

and the solution algorithm searches for a strat-
egy to minimize the sum of regrets, or dq(x). We
refer to (CP1, w) as the compromise MinSum
program. As � increases, more importance is
put on the largest dq(x). Ultimately, the largest
weighted distance completely dominates and,
for � = ∞, becomes:

(CP∞, w) min
x∈F

L∞(w, x) = min
x∈F

max
q∈Q

wqdq(x).

Program (CP∞, w) is not computable, but,
if � = maxq∈Qwqdq(x), it can be rewritten as
(Nakayama 1992):

(CP∞, w)

min �

subject to wqdq(x) = wq

f ∗
q − fq(x)

f ∗
q − fq∗

≤ �, q ∈ Q, x ∈ F

(CP∞, w) is a compromise MinMax program
that balances the objectives in terms of their
normalized distances from the best values.

The metric L� has an important practical
feature for both � = 1 and � = ∞: problems
(CP1, w) and (CP∞, w) are linear programs.
This is important given the size and complex-
ity of the forest management problem. How-
ever, the linearity assumption is not restricting
because solutions for (CP�, w) (1<�<∞) lie
between the solutions for (CP1, w) and (CP∞,
w).3 The problem with the L1 and the L∞ met-
rics is that these bounds depend on the decision
maker’s weights wq. The difficulty of eliciting
a weighting scheme over objectives is further
compounded by the need to determine a value
for � (recall that � is not a risk aversion coeffi-
cient), with any � between 1 and ∞ requiring
nonlinear programming to find a solution. To
avoid this, fuzzy sets can be used.

Fuzzy Programming

Fuzzy programming facilitates the identifi-
cation of a middle point between the two

3 In the case of two criteria (objectives), it is clear that (CP1,
w) and (CP∞, w) are bounds for all the solutions for values of �
between 1 and ∞ (Freimer and Yu 1976; Yu 1974). Blasco et al.
(1999) prove results that guarantee the boundedness of the com-
promise set under very general conditions when the number of
criteria exceeds two. These require the continuity and differen-
tiability of the production-transformation function and existence
of absolute maxima for each criterion (Blasco et al. 1999). These
conditions hold in our application.

boundaries determined by compromise pro-
gramming, and the likely degree to which one
would be satisfied with this strategy. It does
so by assuming that objectives and targets are
vague and imprecise, and best described in
linguistic terms. For example, in our applica-
tion to a forest-dependent community, the ob-
jective “maximize employment” is difficult to
measure in an objective sense and might better
be described by the fuzzy objective “high em-
ployment.” In the forestry context, many ob-
jectives and targets are vague or imprecisely
measured because of uncertainty related to
timber growth and yield, natural disturbances
(wildfire, pests), market conditions, and unan-
ticipated changes in forest policy and technol-
ogy.

We quantify imprecise targets using fuzzy
numbers (e.g., see van Kooten, Krcmar, and
Bulte 2001). Thus, the objective “high financial
return” can be represented by the fuzzy num-
ber FN(x), whose satisfaction or membership
�FN(x) is taken to be a nondecreasing linear
function:

�FN(x)

=




1, if FN(x) > FNMax

FN(x) − FNMin

FNMax − FNMin
, if FNMin ≤ FN(x)

≤ FNMax

0, if FN(x) < FNMin




.

It is graphed in figure 1. Complete satisfac-
tion of this objective (�FN(x) = 1) occurs when
FN(x) is greater than FNMax, while satisfaction
is less than 1 (0 ≤ �FN(x) < 1) when values are
below FNMax. There is no satisfaction whatso-
ever (�FN(x) = 0) if FN(x) is lower than FNMin.

The fuzzy objective “high financial return”
and the assumed piece-wise linear member-
ship function say something about the decision
maker’s preferences. For example, the objec-
tive “very high financial return” implies the
decision maker places even greater weight on
financial returns, and the fuzzy membership
function would then be nonlinear, as indicated
in figure 1.

A second fuzzy objective might be “small
deviation in returns,” which involves some
form of minimization. We can characterize this
vague objective by the fuzzy number DV(x)
whose membership (satisfaction) �DV(x) is
represented by a nonincreasing, piece-wise
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Figure 1. Fuzzy membership functions for objectives: “high financial returns” and “very high
financial returns”

linear function:

�DV(x)

=




1, if DV(x) < DVMin

DVMax − DV(x)
DVMax − DVMin

, if DVMin ≤ DV(x)

≤ DVMax

0, if DV(x) > DVMax




.

Complete satisfaction (�DV(x) = 1) occurs
when DV(x) is less than DVMin, while satis-

Figure 2. Fuzzy membership functions for objectives: “small deviation in returns” and “very
small deviation in returns”

faction is below 1 when values are greater
than DVMin. There is no satisfaction at all
(�DV(x) = 0) when DV(x) is greater than
DVMax. The membership functions for “small
deviation in returns” and “very small deviation
in returns” are provided in figure 2.

The extreme values FNMax, FNMin, DVMax,

and DVMin that characterize the respective
fuzzy membership functions are determined
by solving the (CP1, w) and (CP∞, w) prob-
lems, and choosing the appropriate MinSum
or MinMax value to represent the Max or Min
value. For example, FNMax = max{FNMinSum,
FNMinMax} while DVMin = min{DVMinSum,
DVMinMax}.
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The fuzzy program then selects the strat-
egy that maximizes the minimum satisfaction
over the set of feasible strategies (Zimmer-
mann 1978):

max
x∈F

min
q∈Q.

�q(x)

To implement this, let � = minq∈Q�q(x) =
min[�FN(x), �DV(x)] be the overall satisfaction
level of a strategy x. The fuzzy strategy x and
its satisfaction � are found by solving the linear
program:

max �

subject to :

�FN(x) = FN(x) − FNMin

FNMax − FNMin
≥ �

�DV(x) = DVMax − DV(x)
DVMax − DVMin

≥ �

x ∈ F

(FP)

Application: Economic Development in a
Forest-Dependent, Aboriginal Community

The Little Red River Cree Nation (LRRCN)
occupies portions of the Lower Peace River
region in north-central Alberta, Canada. The
forest resources available to the LRRCN
are currently the most significant source of
potential economic development. In 1986,
the Provincial government allocated volume-
based quota rights to timber on public lands
to the LRRCN, entitling it to an annual vol-
ume of softwood and hardwood timber within
the tenure area of forest management unit
F23 (figure 3); the LRRCN pays stumpage
fees to the Province that are keyed to product
prices. The LRRCN has its own forest man-
agement company that conducts logging and
silvicultural activities, while providing training
and employment opportunities for aboriginal
members. In managing the resources available
to it, the aboriginal community needs to bal-
ance economic, employment, and timber sup-
ply objectives.

The economic criterion consists of net dis-
counted returns to timberland management.
Income is important because the LRRCN
wishes to invest in up-stream activities, such as
wood processing (by purchasing existing pro-
cessing facilities), and economic diversifica-
tion more broadly (e.g., guiding and outfitting,
oil and gas exploration). Currently, aboriginal
people are employed in silviculture (mainly

Figure 3. Province of Alberta and study area

tree planting) and logging, but rarely in trans-
portation of logs to mills as this requires sig-
nificant investment in logging trucks and hu-
man capital to run a private business (see First
Nations Forestry Program 2007b). Community
members are not employed in manufacturing
as wood processing mills are located too far
away.

To evaluate the employment goal, we use
measures of long- and short-term employment.
Long-term employment is measured as the
cumulative employment in logging and silvi-
culture over the entire time horizon, while
the short-term measure constitutes total em-
ployment over the early periods (thirty years)
of the horizon only. Short-term employment
is undoubtedly important for currently un-
employed band members (more than half of
working age adults are unemployed), but long-
term employment is more indicative of a small
community’s ability to survive on the timber
resource base as nonforest economic opportu-
nities gravitate to larger centers.

The timber supply objective addresses con-
cerns related to adequate fiber for mills,
and satisfying contractual obligations with
the Province and industry. This objective is
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typically accomplished through even flow of
harvest volume over time. We couple even
flow to the objective of maximizing cumula-
tive harvest volume over the planning horizon,
because this drives fiber supply as high as pos-
sible. Even flow carries a further burden as it is
used by governments as a rough rule of thumb
to address sustained yield (to some extent an
ecological objective) and community stability
(ensuring employment does not fluctuate over
time).

To examine whether local timber resources
are adequate to support a sustainable eco-
nomic base, we formulate long-term strate-
gic forest planning models with a 200-year
planning horizon divided into twenty decades
and chosen according to the strategic planning
practices used in Canada to ensure that sus-
tainability conditions are truly satisfied. The
dynamic character of our model takes into ac-
count the effect that current decisions have on
the future state of the forest and available fu-
ture management options.

Harvest scheduling decisions are taken to be
nonspatial to keep the programming problem
manageable. Forest attributes are aggregated
into management strata, where a stratum m is
defined as a combination of tree species, stand
density, height, and age. Let M denote the set
of management strata, T the number of plan-
ning periods, and TS <T the number of peri-
ods considered for short-term employment. A
decision variable x = xmt represents the area
(hectares) of stratum m harvested in period
t. Denote the merchantable volume from a
hectare of stratum m harvested in period t by
vmt, the net revenue per hectare of stratum m
in period t by nvmt, and employment generated
by harvesting a hectare of stratum m in period
t by emt. Finally, let r be the discount rate. The
objective functions can then be stated as:

Discounted net revenue from timber:

N(x) =
∑
m∈M

T∑
t=1

(1 + r)−t×10nvmtxmt

Cumulative volume:

V (x) =
∑
m∈M

T∑
t=1

vmtxmt

Long-term employment:

EL(x) =
∑
m∈M

T∑
t=1

emtxmt

Short-term employment:

ES(x) =
∑
m∈M

TS∑
t=1

emtxmt

Maximum harvest flow deviation:

D(x) = max
t

|Volt+1(x) − Volt (x)|.

where Volt (x) = ∑
m∈M vmtxmt is the volume

harvested in period t. Here, D(x) is the maxi-
mum absolute difference between harvest vol-
umes in subsequent periods. In the case of even
flow, this difference is zero; in all other man-
agement strategies, it reflects the level of vari-
ations in timber supply over time. If stability of
timber supply is a management goal that aims
to ensure community stability, D(x) is to be
minimized.

The multiple-objective programming model
can then be written as:

(N) Max N(x)
(V) Max V(x)

(EL) Max EL(x)
(ES) Max ES(x)

(D) Min D(x)
subject to x ∈ F.

The feasible set F consists of all the technical
constraints on land availability, forest manage-
ment, and silvicultural options, the initial and
terminal timber inventories, and the nonneg-
ativity constraints (discussed below). For the
subsequent fuzzy programming model, fuzzy
membership functions are constructed as dis-
cussed above. All models constitute a series of
linear programs coded in GAMS and solved
using the CPLEX solver (Brooke et al. 1998).

To incorporate the LRRCN’s requirement
that forest management be compatible with
traditional land use and cultural values, certain
forestlands are excluded from the harvest land
base; commercial logging is prohibited on the
community’s reserve land, protected areas,
special places, natural areas, and areas with
specific wildlife habitat characteristics. Also
excluded are forest areas where stands are
inoperable or isolated, or where operating
ground rules require exclusion. The timber
harvesting land base covers 305,918 hectares
divided into thirteen classes for which tim-
ber inventory and yield data were available
(Timberline Forest Inventory Consultants Ltd.
2001a, 2001b). The forest resources are made
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Table 1. Output Generated by Employment
in Various Forest Management Activitiesa

Planting &
Logging Output Silviculture Output

Felling 50 m3/hr Tree planting 0.1 ha/hr
Skidding 48 m3/hr Stand tending 0.1 ha/hr
Delimbing 46 m3/hr Site preparation 1.0 ha/hr
Loading 100 m3/hr

aIncludes employment in all categories: operators, administration, and
supervision.
bAssumes 2000 trees per ha.

up of two predominant species—white spruce
and aspen. The spruce-dominated stands are
typically reforested to conifers after harvest,
while aspen-dominated stands are left to re-
generate on their own to deciduous species.
Average harvest costs are $32 per cubic me-
ter for softwoods (including trucking and arti-
ficial regeneration) and $18/m3 for hardwoods
(including trucking but with natural regener-
ation). To ensure sustainability and meet eco-
logical constraints at end of period, we require
that 10% of the ending deciduous and confer-
ous inventories be greater than 100 years old.

Information about the prices LRRCN ne-
gotiated with the forest industry is confiden-
tial. For the current analyses, therefore, we
use estimates of softwood and hardwood saw-
log prices from the British Columbia Inte-
rior Log Market (BC Ministry of Forest and
Range 2006). Our estimated prices are $50/m3

for conifer logs and $30/m3 for hardwood logs;
a 5% real rate of discount was used. We also
examine the sensitivity of results to changes in
prices and discount rate. To convert forestry
activities into employment, we use the values
indicated in table 1.

Table 2. Payoff Matrix for Basic Scenario Strategiesa

Objective That is Optimized
Objective Values When Single
Objective on Right is Optimized N V EL ES D

NPV (106 $) 474.683 373.588 365.649 303.353 194.203
Volume (106 m3) 125.949 154.835 154.565 123.999 132.128
Long-term employment (106 hrs)b 17.018 18.693 19.117 14.837 15.795

(48.62) (53.41) (54.62) (42.39) (45.13)
Short-term employment (106 hrs)b 5.472 5.034 5.357 6.139 2.258

(104.23) (95.89) (102.04) (116.92) (43.01)
Max flow deviation (106 m3) 17.836 26.588 25.779 27.103 0.000

aFigures in bold along the main diagonal denote ideal values obtained by single-objective optimization of the objective on the left. The worst values of each
objective in the payoff matrix are underlined, although, unlike the ideal values along the diagonal, there is no guarantee that these are the worst values. Thus,
the ideal vector is f ∗ = {474.683, 154.835, 19.117, 6.139, 0}, but we choose the ‘nadir’ vector as f ∗ = {0, 0, 0, 0, 27.103}.
bFull-time equivalent (FTE) permanent jobs are provided in parentheses. Long-term jobs are obtained by dividing total long-term hours by 1,750 hours per
year × 200 years (length of planning horizon); short-term jobs are obtained by dividing total short-term hours by 1,750 × 30 years.

Basic Strategies: Single-Objective
Optimization Results

The MOP model is first solved for each of the
objectives separately with all constraints that
define the feasible set F in place. That is, we
optimize each objective function individually
over the set of feasible strategies F to deter-
mine f ∗

q for all q ∈ Q and compute the val-
ues of the remaining criteria at those optimal
strategies. We refer to these outcomes as the
ideal objective values; they are provided in
the pay-off matrix (table 2) along the main
diagonal and indicated in bold. Each row of
table 2 consists of values of the individual ob-
jectives calculated for the corresponding basic
strategy. The first two objectives are to max-
imize the net present value and the cumula-
tive harvest volume over the planning horizon,
followed by the objectives of maximizing the
long-term (cumulative 200-year) and short-
term (first thirty years) employment. The last is
to minimize the maximum deviation between
period harvests; this strategy (denoted D) is
obtained by maximizing the cumulative vol-
ume V(x) under even-flow constraints for both
the softwood and hardwood harvest, thus pro-
viding the highest possible even-flow harvests
over the horizon. Note that the sustained-yield
strategy represented by this final row coincides
with current forest management practice in the
study area.

From table 2, it is clear that all objectives are
in conflict. In addition to the conflict between
high net present value and cumulative harvest
volume, the results indicate significant trade-
offs among other objectives. For example, in
order to attain the maximum net present value
of $474.7 million, cumulative volume drops
to 125.9 million m3 while at the same time



1112 November 2008 Amer. J. Agr. Econ.

harvests deviate up to 17.8 million m3 between
consecutive periods. The strategy of maximiz-
ing short-term employment leads to the worst
values for cumulative volume and long-term
employment, plus it generates the greatest de-
viation of harvest. In order to generate 6.1 mil-
lion hours of employment (or some 117 perma-
nent, full-time jobs) over the first three periods,
cumulative volume drops to 124.0 million m3

relative to its ideal value of 154.8 million m3,
long-term employment falls to its lowest value
of 14.8 million hours (42 jobs), and there is a
difference of 27.1 million m3 between consec-
utive period harvests.

The trade-off required with respect to the
even-flow objective is achievable only at huge
financial cost and significant loss in short- and
also long-term employment, as well as sacri-
fice in cumulative harvest volume. The cost
of the even-flow strategy calculated relative
to the ideal net present value is $280.5 mil-
lion (59% below ideal), while respective short-
and long-term employment are reduced by 74
and 9.5 permanent full-time jobs (63% and
17% below ideal), and the sacrifice in cu-
mulative volume amounts to 22.7 million m3

(15% less).

Compromise Strategies

Since none of the management strategies that
optimize a single objective function is accept-
able, we seek a resolution to the conflict by
solving the (CP�, w) program for � = 1 and
� = ∞. The distance measure in equation (1)
requires identification of the worst and best
possible values of each objective q. For this
application, the ideal vector is f ∗ = {474.683,
154.835, 19.117, 6.139, 0}, obtained directly
from single-objective optimization (table 2).
However, as noted earlier, finding an appro-
priate nadir vector f q∗ may be troublesome, so
it is usually approximated by a suitable lower
bound. For the nonnegative objective func-
tions f q(x), q ∈ {N, V, EL, ES}, the nadir vec-
tor is not identical to the underlined values
in table 2; hence, it is chosen as f ∗ = {0, 0,
0, 0, 27.120}—the worst possible values of the
objectives. Outcomes of the compromise pro-
gramming MinSum and MinMax management
strategies are provided in table 3 along with
the corresponding distance measures. Sensi-
tivity results for various objective weighting
schemes, output prices, and discount rates are
also provided. Note that the f ∗

N value (ideal or
target value for discounted net revenue) will
vary with discount rate and prices, but the ideal

values for the other objectives will remain the
same, as will all the nadir values.

Consider first the baseline strategy with
equal weights, 5% discount rate, and stumpage
values of $30/m3 for hardwoods (deciduous
trees) and $50/m3 for softwoods (conifers). The
normalized overall distance (objective) values
are 0.106 for the L1 metric (MinSum strategy)
and 0.056 for the associated L∞ metric (Min-
Max strategy), indicating that the overall nor-
malized distance between realized objectives
and targets is relatively small, particularly for
MinMax. For the MinSum strategy net present
value is 77.4% of its best possible value, while
long-term employment attains 94.3% of its
ideal; the outcomes of the MinMax strategy
range between 71.9% and 97.3% of ideal.
Given the lower objective value for MinMax
(recall the objective is minimization), the Min-
Sum strategy seems to be better balanced with
four of five objectives within 12% of ideal
(and three within 7.5% of ideal). For the Min-
Max strategy, four objectives are more than
20% from their ideal, while deviation of timber
flow is very close to its target. With the excep-
tion of the low-price scenario, a similar pattern
(but with different magnitudes for deviations)
emerges in comparing the MinSum and Min-
Max strategies. Yet, there is no unequivocal
way to determine which is preferred.

Compared to the even-flow strategy re-
quired under Alberta’s extant forest man-
agement practices, financial performance and
short-term employment prospects could be en-
hanced with only a slight relaxation of the
even-flow constraint and little or no worsening
of the cumulative volume and long-run em-
ployment objectives (compare table 3 results
with those in the last column of table 2).

Fuzzy Strategy

The crisp objectives of single-objective and
compromise programming are respecified as
fuzzy objectives to reflect their vagueness and
the imprecision with which they are mea-
sured. Thus, the objective Max N(x) be-
comes the objective “high discounted net
returns”; Max V(x) becomes “high timber
output”; Max EL(x) and Max ES(x) become
“high long-run (short-run) employment”; and
Min D(x) becomes “low maximum deviation
from even flow.” To construct membership
functions for each of these fuzzy objectives, it
is first necessary to define the ranges of ac-
ceptable objective values. As noted earlier,
we use the outcomes from the two extreme
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Table 3. Compromise Programming Results, Various Scenariosa

Objectives MinSum MinMax MinSum MinMax MinSum MinMax

Equal Weights (0.3, 0.1, 0.1, 0.1, 0.4) (0.1, 0.3, 0.3, 0.2, 0.1)
Weighting Scheme
NPV (106 $) 367.481 341.350 378.708 109.879 388.822 230.108

[0.226] [0.281] [0.202] [0.769] [0.181] [0.515]
Volume (106 m3) 143.442 111.344 142.688 111.490 140.311 125.853

[0.074] [0.281] [0.078] [0.280] [0.094] [0.187]
Long-term FTE jobsb 51.52 43.05 51.91 36.23 50.92 43.92

[0.057] [0.212] [0.050] [0.337] [0.068] [0.196]
Short-term FTE jobsb 103.10 86.90 105.49 17.18 105.16 53.34

[0.118] [0.257] [0.098] [0.853] [0.101] [0.544]
Max flow dev (106 m3) 2.887 1.353 2.924 1.627 2.690 0.226

[0.058] [0.027] [0.058] [0.033] [0.054] [0.005]
Value of L1 or L∞c [0.106] [0.056] [0.082] [0.086] [0.109] [0.155]

3% 5% 10%
Discount Rate
NPV (106 $) 506.367 528.275 367.481 341.350 293.558 49.679

[0.130] [0.093] [0.226] [0.281] [0.168] [0.859]
Volume (106 m3) 146.476 140.477 143.442 111.344 145.361 64.993

[0.054] [0.093] [0.074] [0.281] [0.061] [0.580]
Long-term FTE jobsb 52.60 49.56 51.52 43.05 52.71 24.69

[0.037] [0.093] [0.057] [0.212] [0.035] [0.548]
Short-term FTE jobsb 104.03 107.48 103.10 86.90 107.94 23.85

[0.110] [0.081] [0.118] [0.257] [0.077] [0.796]
Max flow dev (106 m3) 3.219 3.441 2.887 1.353 5.192 0.000

[0.064] [0.069] [0.058] [0.027] [0.104] [0.000]
Value of L1 or L∞c [0.079] [0.019] [0.106] [0.056] [0.089] [0.172]

d = $20/m3; d = $30/m3; d = $60/m3;
c = $35/m3 c = $50/m3 c = $100/m3

Price Sensitivity
NPV (106 $) 31.938 39.198 367.481 341.350 605.829 605.829

[0.159] [0.341] [0.226] [0.281] [0.000] [0.000]
Volume (106 m3) 130.231 102.035 143.442 111.344 126.256 77.267

[0.596] [0.505] [0.074] [0.281] [0.185] [0.501]
Long-term FTE jobsb 46.15 33.74 51.52 43.05 47.16 32.16

[0.155] [0.382] [0.057] [0.212] [0.137] [0.411]
Short-term FTE jobsb 56.34 57.60 103.10 86.90 60.71 58.35

[0.518] [0.507] [0.118] [0.257] [0.481] [0.501]
Max flow dev (106 m3) 0.000 0.471 2.887 1.353 1.767 0.923

[0.000] [0.009] [0.058] [0.027] [0.035] [0.018]
Value of L1 or L∞c [0.286] [0.136] [0.106] [0.056] [0.167] [0.100]

aThe MinSum values represent the solution of the (CP1, w) program, while MinMax values represent the solution to the (CP∞ , w) program. Values of the
normalized distances are provided in square brackets. The baseline scenario is equal weights, discount rate of 5%, and stumpage values of $30/m3 and $50/m3

for deciduous (d) and coniferous (c) timber, respectively.
bFTE refers to full-time equivalent permanent jobs. See footnote b, table 2.
cThe L1 metric is associated with MinSum, L∞ with MinMax.
dThe NPV target changes with discount rates and prices, but other ideal values remain the same. For discount rates, NPV∗(3%) = $582.270 mil and
NPV∗(10%) = $352.930 mil; for higher prices NPV∗ = $605.829 mil; for lower prices NPV∗ = $79.114 mil.

compromise strategies to define the ranges
of acceptable outcomes in the fuzzy targets.4
Membership functions for the fuzzified objec-
tives N, V, EL, and ES are similar to those of

4 In contrast, instead of the compromise results, Duval and
Featherstone (2002) used the best value of an objective (obtained
by optimizing the single objective) and the worst possible value. We
provide some sensitivity of methods for selecting best and worst
values.

figure 1, while that of objective D is similar to
figure 2, with the values from table 3 (and iden-
tified in table 4) constituting the extreme val-
ues at which the (assumed) linear fuzzy mem-
bership functions become 0 (no membership
in the set) or 1 (compete membership).

The outcomes of the fuzzy strategy ob-
tained by solving (FP) are provided in table 4.
The fuzzy outcomes fall between the Min-
Sum and MinMax compromise outcomes. One



1114 November 2008 Amer. J. Agr. Econ.

Table 4. Outcomes of the Fuzzy Strategies

Item From Basic Scenario Over All Scenarios

Fuzzy Membership Parameters
{NMin, NMax} (106 $) {108.334, 367.481} {31.938, 605.829}
{VMin, VMax} (106 m3) {69.323, 143.442} {64.993, 146.476}
{ELMin, ELMax} (FTE jobs) {27.72, 51.52} {24.69, 52.71}
(ESMin, ESMax} (FTE jobs) {27.38, 103.10} {23.85, 107.94}
(DMin, DMax} (106 m3) (0.000, 2.887) (0.000, 5.192)

Degree of Degree of
Objective Outcome Membershipa Outcome Membershipa

NPV (106 $) 303.24 0.752 379.04 0.605
Volume (106 m3) 141.68 0.976 142.90 0.969
Long-term FTE jobs 48.27 0.863 51.31 0.950
Short-term FTE jobs 84.33 0.752 96.61 0.875
Max flow deviation (106 m3) 0.72 0.752 2.05 0.605

aInterpreted as level of satisfaction with attainment of the objective. Minimum value of the fuzzy program’s objective value (minimum value of �) is
underlined.

advantage of the fuzzy approach is that it gives
some indication of the level of satisfaction that
a decision maker (LRRCN community) might
attach to the attainment of various objectives.
The fuzzy strategy is the only one that provides
a true compromise solution to the MOP prob-
lem for LRRCN economic development. This
compromise feature is supported by a distri-
bution of membership values for the different
objectives (table 4). The membership values
range from 0.752 for the net present value,
short-term employment and flow deviation ob-
jectives to 0.976 for the cumulative volume ob-
jective. We interpret this as follows: The degree
of satisfaction or comfort that the decision
maker has in implementing the strategy ob-
tained by solving the fuzzy program is at least
0.752. When the values used to determine the
fuzzy membership functions increase, the com-
fort level declines as indicated in columns 3 and
4 of table 4. Thus, a decision maker should be
more comfortable with fuzzy results based on
membership functions derived from compro-
mise programming that those derived from the

Table 5. Even-flow, Compromise and Fuzzy Outcomes Relative to Single-
Objective Ideals

Compromise Fuzzy
Current

Objective Even-flow MinSum MinMax Basic All

NPV (106 $) 40.9% 77.4% 71.9% 63.9% 79.8%
Volume (106 m3) 85.3% 92.6% 71.9% 91.5% 92.3%
Long-term FTE jobs 82.6% 94.3% 78.8% 88.4% 93.9%
Short-term FTE jobs 36.8% 88.2% 74.3% 72.1% 82.6%
Max. flow dev. (106 m3) 100.0% 94.2% 97.3% 97.3% 92.4%

single-objective optimization results. This does
not imply that the former strategy is better in
some objective sense; it only suggests that the
decision maker feels better about the way the
outcomes satisfy all of the objectives.

Finally, in table 5 outcomes of the MinSum,
MinMax and fuzzy strategies are compared
with each other and with the current even-flow
policy (D) on the basis of their relative perfor-
mance with regard to the ideal values. What is
particularly striking is that the outcomes asso-
ciated with the compromise programming and
fuzzy programming solutions are strikingly dif-
ferent from the current even-flow policy. The
results indicate that there are large gains to
be made to the other objectives from relaxing
the even-flow constraint, but that further gains
likely involve difficult trade-offs among all ob-
jectives with the basic fuzzy strategy repre-
senting the best compromise for the base-case
scenario. Further evidence of the problems as-
sociated with various strategies and implied
trade-offs can be obtained by analyzing tem-
poral harvests.
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Figure 4. Annual harvest over the horizon for the alternative strategies

Harvest Flow

When we consider annual harvests per decade
under the assumption that decision makers fo-
cus only on a single objective, we find that
harvests will be constant over time (minimize
deviation of harvests between decades), take
place almost entirely in the first thirty years
of the planning horizon (maximize short-term
employment), or take on a significant tempo-
ral fluctuating pattern (other objectives). In all
cases except even flow, harvests are projected
to cease for a significant period beginning as
early as the third decade. Cessation of har-
vests is avoided in the even-flow case only be-
cause harvest levels are depressingly low from
an economic development point of view. Can a
compromise or fuzzy strategy lead to outcomes
that avoid this possibility?

Harvest levels for the even-flow, compro-
mise and fuzzy strategies are provided in fig-
ure 4. The good news is that, even though
harvest levels in each of the first decades are
declining, the compromise and fuzzy strate-
gies are able to delay total cessation of har-
vests to at least the fifth decade, while main-
taining harvest levels above that under the
current even-flow regime for at least thirty
years.5 This suggests that, while a downfall in
timber harvests is unavoidable, harvest levels
might be sufficiently high so that they could be

5 Higher harvests in the final two decades under both fuzzy
strategies and, especially, the MinSum strategy are driven primar-
ily by the volume objective. This occurs because, as noted earlier,
the end point constraint is in terms of an old-growth requirement.

relied upon as a driver of economic develop-
ment for perhaps twenty to thirty years, after
which the local economy must be diversified if
the forest-dependent community is to survive.
This conclusion is reinforced by the projections
concerning employment.

Discussion and Conclusions

Finding an acceptable solution to the multiple-
objective programming problem using out-
comes of compromise programming is not a
completely novel idea. The novelty introduced
here is that we employ the extreme bounds
from compromise programming to construct
fuzzy membership functions for more than
two objectives, with fuzzy programming then
used to identify a middle ground strategy and
the level to which a decision maker might be
satisfied with such a strategy. This has sev-
eral advantages compared to other methods of
multiple-objective decision making. First, us-
ing fuzzy programming we are able to deter-
mine a strategy whose outcome lies between
the two extremes represented by the Min-
Sum (risk neutral) and MinMax (risk aversion)
strategies of compromise programming. Sec-
ond, using the MinSum and MinMax solutions
to construct the fuzzy membership functions
leads to a higher level of decision maker com-
fort (satisfaction) with the final outcome than
if fuzzy memberships were constructed using
the results from single-objective optimization.
Third, our approach explicitly takes into ac-
count two extreme attitudes with respect to
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risk aversion—risk neutrality as represented
by the L1 metric and total risk aversion as
represented by the L∞ metric. Finally, the ap-
proach does not require information about de-
cision makers’ risk preferences.

Although we do not require information on
risk preference, it may still be desirable to
elicit a decision maker’s preferences regarding
the relative importance of objectives. In the
case study, we did so using sensitivity analysis
with respect to the weighting scheme. We also
suggested how we might employ linquistic in-
formation about decision makers’ preferences
over objectives within a fuzzy framework, al-
though we did not consider this approach in
our study as it would require us to aban-
don the linear programming framework (viz.,
nonlinear fuzzy membership functions). Fu-
ture research might compare crisp weights
with fuzzy ones—a comparison of the elici-
tation of a traditional weighting scheme over
preferences with linguistic responses leading
to fuzzy numbers as illustrated in figures 1
and 2. In addition to examining the ease with
which to elicit information, results from multi-
attribute utility optimization and compromise
programming could be compared with fuzzy
programming.

A major reason for undertaking the cur-
rent research was to investigate the types
of trade-offs that forest-dependent, aboriginal
communities in northern Canada face. This is
particularly relevant when forest management
policy focuses on a single objective, an even
flow of timber, which is the bedrock of public
forest policy in Canada. This objective is meant
to maintain employment at a relatively con-
stant level thereby enabling community stabil-
ity if not economic growth and development.
Our results indicate that the even-flow policy
is an insufficient driver of economic develop-
ment in timber-dependent communities; it is
not adequate for meeting employment objec-
tives and, based on low timber output, cannot
be used to generate secondary manufacturing
jobs. The dilemma of even-flow constraints for
forest-dependent communities is compounded
by the fact that, in order to remain globally
competitive, the number of jobs per unit of har-
vest will fall over time due to mechanization,
technological improvements and economies of
size. Perhaps this is why Leake, Adamowicz,
and Boxall (2006) found that forest depen-
dence was an obstacle to the economic devel-
opment of rural communities in Canada.

By including multiple objectives and un-
certainty explicitly into forest management

models, we identified a variety of alternative
strategies that provide significantly different
levels of projected timber supply, economic
performance and employment. In particular,
management strategies that allow for some
flexibility in the even-flow constraint produced
much higher economic benefits as well as
greater employment opportunities. While the
even-yield strategy guarantees nondeclining
employment opportunities over the planning
horizon, mainly because it provides jobs in
silviculture (which is labor intensive), the strat-
egy is unacceptable for addressing the em-
ployment concerns of a growing community
population. To do so requires higher financial
returns to provide economic surpluses that can
be used to fund economic development and
diversification. Strategies that rely on inten-
sive harvesting early in the planning horizon
may enable forest-dependent communities to
achieve high financial returns without sacri-
ficing the future use of forest resources, al-
though a period of low or zero harvests must be
accepted. Without it, economic development
that is already difficult to achieve may not be
realized at all.

[Received March 2007;
accepted January 2008.]
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