Genetic Influences on Longleaf Pine Wood Properties Assessed Using Near Infrared Spectra

Todd F. Shupe, Leslie H. Groom, Michael Stine, and Brian K. Via

Objectives

- Develop models to predict wood strength, stiffness, chemistry, and fiber morphology from NIR spectra for longleaf pine.
- Use the models to analyze a diallel including:
 - Quantify genetic variation
 - Determine if genetic variation is additive or non-additive.

Juvenile & Mature Wood Samples age 30

Strength and stiffness response

What happens if you:	Burst	Tensile	Tear	Compression	MOE	Pulp Yield	Longitudinal Shrinkage
Decrease fibril angle from 40 to 30 degrees	?	↑ 2.5%	↑	↑ 3%	↑100%	?	↓ 66%
Increase cell length by 10%	↓ 10%	↓ 6%	↑ 15%	↓ 3%	↑	No effect	No effect
Increase cell wall thickness by 10%	↓ 6%	,	↑ ↑15%	↓ 19%		↑ 1%	No effect
Increase % latewood by 10%	↓ 3%	.	↑ 7 %	↓	<u> </u>	↑ 1%	No effect

Microfibril angle and specific gravity tree patterns

Longitudinal Shrinkage

Relative Strength

Harvesting strategy

Increment core collection

Increment core test strips – preliminary lay-up

Results

Spectra response to wood chemistry

Variance

Results

Prediction of Density

Prediction of density for mature and juvenile wood

Validation of density model

Density versus MOE for pith, juvenile, and mature wood

Prediction of density via ratio

Density residual plot for juvenile wood density versus mature wood model

MOE residual plot for juvenile wood density versus mature wood model

MOR residual plot for juvenile wood density versus mature wood model

Preliminary Results

- Different models may be needed for juvenile wood at breast height versus mature wood taken from the whole tree.
- MOE and MOR is:
 - Strongly modeled by spectra for mature wood (r²>0.85).
 - Moderately modeled by spectra from juvenile wood at butt $log(r^2>0.75)$.
 - Weakly modeled by spectra for pith wood ($r^2 < 0.15$).
- Density can moderately be modeled for all three tree regions (0.65 to 0.75 r^2).
 - The baseline shift in spectra was probably attributable to macro density variation while the wavelength ratio was attributable to micro density variation attributable to lignin and cellulose.