Genetic Influences on Longleaf Pine Wood Properties Assessed Using Near Infrared Spectra Todd F. Shupe, Leslie H. Groom, Michael Stine, and Brian K. Via #### Objectives - Develop models to predict wood strength, stiffness, chemistry, and fiber morphology from NIR spectra for longleaf pine. - Use the models to analyze a diallel including: - Quantify genetic variation - Determine if genetic variation is additive or non-additive. ## Juvenile & Mature Wood Samples age 30 #### Strength and stiffness response | What happens if you: | Burst | Tensile | Tear | Compression | MOE | Pulp Yield | Longitudinal
Shrinkage | |---|-------|---------------|--------------|-------------|--------------|-------------|---------------------------| | Decrease fibril angle from 40 to 30 degrees | ? | ↑ 2.5% | ↑ | ↑ 3% | ↑100% | ? | ↓ 66% | | Increase cell length by 10% | ↓ 10% | ↓ 6% | ↑ 15% | ↓ 3% | ↑ | No effect | No effect | | Increase cell wall thickness by 10% | ↓ 6% | , | ↑
↑15% | ↓ 19% | | ↑ 1% | No effect | | Increase % latewood by 10% | ↓ 3% | . | ↑ 7 % | ↓ | <u> </u> | ↑ 1% | No effect | ## Microfibril angle and specific gravity tree patterns #### Longitudinal Shrinkage #### Relative Strength #### Harvesting strategy #### Increment core collection ## Increment core test strips – preliminary lay-up #### Results ## Spectra response to wood chemistry #### Variance #### Results #### Prediction of Density ## Prediction of density for mature and juvenile wood #### Validation of density model ## Density versus MOE for pith, juvenile, and mature wood #### Prediction of density via ratio # Density residual plot for juvenile wood density versus mature wood model # MOE residual plot for juvenile wood density versus mature wood model # MOR residual plot for juvenile wood density versus mature wood model #### Preliminary Results - Different models may be needed for juvenile wood at breast height versus mature wood taken from the whole tree. - MOE and MOR is: - Strongly modeled by spectra for mature wood (r²>0.85). - Moderately modeled by spectra from juvenile wood at butt $log(r^2>0.75)$. - Weakly modeled by spectra for pith wood ($r^2 < 0.15$). - Density can moderately be modeled for all three tree regions (0.65 to 0.75 r^2). - The baseline shift in spectra was probably attributable to macro density variation while the wavelength ratio was attributable to micro density variation attributable to lignin and cellulose.