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This thesis is a collection of four submitted manuscripts that present

methods to assist forest ecosystem service managers wanting to develop oper-

ational sampling, monitoring, and production plans for a set of specific quan-

tifiable ecosystem services, which are formulated as a series of general multi-

objective optimization problems. The problems are solved using a heuris-

tic solution technique to determine the best trade-off, efficient, or Pareto

frontiers, among the potentially competing and possibly non-commensurate

objectives, with the intention that the decision maker(s) will select and im-

plement a single plan from the Pareto frontier.

The first manuscript presents the general formulation and solution frame-

work, and demonstrates the method with a problem that has five objectives.

The method demonstrates that Pareto frontiers for problems with unknown

inputs, many competing objectives, and complex constraints can be analyzed

using simple search rules.



The second manuscript examines design-based estimation and model-

based prediction methods to obtain guesses of unknown inputs, and the re-

sulting outputs, for operational production plans. The results indicate that

model-based prediction methods, using simple correlation models, provide

benefits by reducing production uncertainties, and thus offer substantial cost

savings, or increases in net revenue, when comparison to traditional design-

based methods.

The third manuscript approximates the Pareto frontier between the max-

imum information content (i.e. entropy) and the minumum cost for a forest

sample, where the results from the sample will be used for many objectives

(e.g. prediction, simulation, and optimization). The results depend on the

definition of the sample design, but follow similar patterns for all 36 sample

designs examined.

Finally, the fourth manuscript presents an examination of the Pareto

frontier for an operational harvest schedule, using the sample that contains

the maximum information content, and the objectives for the operation must

satisfy multiple internal and external customers (i.e. production, financial,

environmental, logistics, and marketing).

By including additional information (i.e. spatial correlation) in the pre-

diction, simulation, and optimization process, these manuscripts demonstrate

substantial potential increases in financial objectives (i.e. maximize net rev-

enue, minimize costs), environmental objectives (i.e. maximize unharvested

area), materials management objectives (i.e. minimize product degredation),

information objectives (i.e. maximum entopy sampling) as well as provide a

framework for the objective examination of complex forest ecosystem supply

chain problems with multiple objectives.
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1. INTRODUCTION

A broad definition of forestry is a combination of biological, quantitative,

managerial and social sciences applied to the management and conservation

of forest resources (Helms, 1998). The practice of forestry involves the inter-

vention of forest conditions for the sake of producing some desired societal,

biological, or economic objectives (Gregoire, 2002). Often, these objectives

require quantitative information which are often diverse, incomplete, and fre-

quently dynamic. The task of acquiring and assessing the status of the forest

biome, which typically falls under the chore of forest inventory, can include

assessments of woody biomass, flora, fauna, water, and atmospheric gases

(Gregoire, 2002). The production of these goods and services, which is the

role of forest engineering, requires outputs from forest inventory (i.e. predic-

tions), capital inputs (i.e. finance), and has been the subject of numerous

optimization studies. As the objectives of these two fields, the measure-

ment of their associated metrics (i.e. water quality, air quality, wood fiber,

recreation, and economic value) and their optimization (e.g. maximize water

quality, minimize prediction error, maximize information content, minimize

cost, maximize revenue, minimize waste, minimize bias, maximize histori-

cal range of variability, minimize environmental degradation) become more

prevalent in society, often these two objectives appear to be in conflict or

competition, and so, our need to understand the trade-offs among them be-

comes paramount.

The need to address these issues is large indeed, and to accomplish this,

these manuscripts present a general framework and solution method for envi-

ronments with multiple objectives, complex constraints, and diverse solution

spaces. The manuscripts are couched within a supply chain logistics man-
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agement framework, presented by Riopel et al. (2005) where the authors

provide a framework for business logistics decision-making by classifying lo-

gistics decisions and highlight the relevant linkages among them, focusing on

the precedence of the relationships and how each decision influences others.

For these manuscripts, the specific focus is on the communication, informa-

tion, and logistics networks within the primary forest products supply chain.

Specifically, these manuscripts develop a general framework to formulate, ex-

amine, and solve complex problems in probability sampling, optimization,

and decision making using a population of individual trees within a bounded

polygon, sets of complex constraints with multiple objectives, and a heuristic

solution technique.

In Chapter One, I present the formulation for and give an example of a

small primary forest products supply chain, where the data are individual

point locations that represent volume supplies, which in this case, represent

eight individual and arbitrary stems. The ”sample”data are taken from Table

12.1 in Isaaks and Srivastava (1989). The manuscript presents a formulation

and solution framework for a general non-linear, mixed-integer assignment

problem, capable of handling single or multiple objectives, datum with mul-

tiple supports (point and area input data), and complex constraints.

In Chapter Two, I examine the differences between traditional design-

based estimation of the volume (i.e. biomass) in a finite harvest area, as is

commonly performed in forest supply chain planning, against model-based

predictions of the same attribute using simple spatial correlation models to

describe relationship between proximity and similarity among observations

at the sample locations. The chapter presents an examination of sampling

using non-traditional sample location patterns, sample intensity, and the ap-

plication of spatial correlation models, and their influence on both traditional
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design-based and model-based guesses of the total volume in a harvest poly-

gon. This chapter answers the question regarding which method of inference

is more appropriate for precisely managing forest ecosystem services, specif-

ically, the planning for and the optimization of the primary forest products

supply chain where practitioners require multiple inputs from potentially dis-

parate data sources, and when little or no a priori information is available.

In Chapter Three, I determine the optimal spatial sample schemes, as de-

fined by de Gruijter et al. (2006), from a population of sample designs, where

the interest is in optimization of a single sample from which the results will

be used for multiple purposes. Since each intended use of the data may yield

a different optimal sample set depending on the criteria (i.e. estimation, pre-

diction, optimization, simulation, or some combination thereof), the problem

is to examine the trade-offs between the maximum information content and

the minimum sample cost. The problem is formulated as a bi-objective prob-

lem where the objective is to determine the set of samples for a population of

sample designs that maximize entropy (Shewry and Wynn, 1987) and min-

imize the sampling cost, defined as a traveling salesman problem (Lawler

et al., 1985). This technique combines methods used in in large scale en-

vironmental and hydrological network monitoring, which is often subject to

intense budgetary scrutiny, and the well-established traveling salesman prob-

lem, which is often used in transportation planning. The resulting samples

can be used for any variety of, or multiple, purposes (i.e. D-optimal ex-

perimental design), from which one sample design is selected as the sample

design that is used to generate the inputs into a multi-objective/multi-criteria

decision making framework, presented in Chapter One.

In Chapter Four, I combine the previous three manuscripts, to construct

a simplified ecosystem services supply chain planning and optimization prob-
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lem. The practitioner is required to satisfy a demand vector, maintain an

inventory, maximize net revenue, and maximize the area left unharvested.

The method allows the practitioner to examine the optimum trade-off curves,

or Pareto frontiers, among various management plans, for a variety of oper-

ational metrics, and provide them with a rational to select a single plan for

implementation.

To accomplish the numerous goals of these manuscripts, which like much

of forestry, is really a collection of concepts from a wide variety of disci-

plines, I present the framework, problems, and solution techniques using

the frameworks of their respective fields. I use definitions that are consis-

tent with classical design-based sampling texts (Cochran, 1977; Knottnerus,

2003; Tillé, 2006), model-based geostatistics texts (Cressie, 1993; Wacker-

nagel, 1998), information theory (Shannon, 1948), combinatorial optimiza-

tion (Lawler et al., 1985), multi-objective optimization (Steuer, 1986), graph

theory (Diestel, 2005), inventory theory (Hillier and Lieberman, 1995; Por-

teus, 2002), and evolutionary algorithms (Eiben and Smith, 2003). I have

attempted to use notation consistent with these texts, and have translated

the notation for formulations linking the fields when required.

Finally, this collection of manuscripts completes the initial work set forth

by researchers at Oregon State University, to develop a framework for the

study, management, and optimization of the primary forest products supply

chain. To provide these tools, these manuscripts make original contributions

to the following subject areas within forest information science:

• Multiple-objective optimization

– A general framework for non-linear mixed-integer multi-objective

NP-hard planning problems with deterministic and stochastic el-

ements;
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– The use of Multi-Objective Evolutionary Algorithms (MOEA),

in forest engineering, forest sampling, and forest operations for

examination of the trade-offs among potentially competing and

possibly non-commensurate objectives;

– Basic research regarding evolution strategy parameter values and

their influence on the performance of the search of the solution

space; and

– A completely enumerated non-trivial example problem which can

be used to examine and compare multi-objective solution search

techniques.

• Optimal data acquisition for forest planning problems

– Examination of design-based and model-based inference for the

estimation or prediction of missing values which are then used for

planning, simulation, and optimization, of forest operations;

– The inclusion of simple spatial correlation structures to assess for-

est product availability in an operational environment;

– The examination of various spatial correlation models, from which

more precise predictions of forest products can be obtained;

– The application of entropy (Shannon, 1948) in forest sampling

where the goal is to obtain data from a finite region for multiple

purposes; and

– Optimal experimental design sampling, expressed as a sample data

acquisition problem for supply chain optimization activities.

• Precision production planning in forest environments



6

– A framework that can combine potentially disparate forest op-

erations (e.g. production and log yard inventory) into a single

problem where the practitioner can examine the consequences of

various decisions objectively;

– A framework that provides ability to combine deterministic, stochas-

tic inputs and outputs (i.e. probability maximization problems,

single and joint-chance constraint problems), and general non-

linear mixed-integer multi-objective planning problems into a sin-

gle framework;

– Examination and communication of the Pareto set for high dimen-

sional solution spaces (i.e. many objectives), which are common

in forest engineering; and

– Model-based sampling can be used to derive the inputs needed

to formulate problems that include stochastic elements such as

chance-constraints and probability objectives
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2. A GENERALIZED FRAMEWORK FOR OPTIMIZING

MULTI-OBJECTIVE FOREST SUPPLY CHAIN OPERATIONS

2.1 ABSTRACT

We present a formulation and heuristic solution technique to determine

the Pareto frontier for multi-objective mixed-integer non-linear spatially cor-

related forest products supply chain planning problems. The Pareto Archiv-

ing Evolutionary Strategy (PAES), presented by Knowles and Corne (2000),

is applied to a small operational forest production planning problem with

the following objectives: 1) obtain the unbiased minimum variance stem vol-

ume estimates for unmeasured stems, 2) minimize constraint violations, 3)

maximize daily production subject to demand constraints, 4) minimize the

reserve stem volume subject to certification constraints, and 5) minimize soil

disturbance. The resulting Pareto set contains the values of the objective

functions, daily cutting schedules, and the associated path a ground-based

harvester must travel in order to implement the plans that maximize or min-

imize the objectives while meeting the constraints.

The example problem contains 68,584,320 possible solutions of which 465

are global Pareto optimal solutions. Heuristic performance is measured and

discussed by examination of the mutation rate at which new Pareto optimal

solutions were discovered and the proportion at which mutated candidate so-

lutions entered the Pareto archive. Candidate solution mutation probability

rates where limited to 0.01, 0.05, and 0.1 mutations per candidate solution,

each of which were applied to populations candidate solutions of 10, 50 and

100 individuals respectively.

All mutation rates for the population size of 10 candidate solutions yielded
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the slowest rate of discovery or ”learning rate”. The discovery of new Pareto

optimal solutions was strongly influenced by the mutation rate for the pop-

ulation of 50 and 100 candidate solutions. The best discovery rate of new

Pareto solutions was obtained using the largest population size (100) and the

highest mutation rate (0.1).

The framework presented here supports precision production planning in

forest environments by 1) providing a statement of how the decision maker

obtained the inputs upon which, 2) any selected decision, is considered op-

timal, given a set of inputs, objectives, and constraints, 3) documents the

attainment of the best possible set of decision alternatives from which the

decision maker can select, and 4) facilitates rapid examination of the trade-

offs among potentially competing and possibly non-commensurate objectives

when solution time is critical as might be the case in general decision making

”roundtable” type environments.

2.2 INTRODUCTION

Strategic, tactical and operational plans for forest environments should 1)

explicitly state how the decision maker obtained the inputs upon which, 2)

any selected decision for a particular formulation, is considered optimal, given

a set of inputs, objectives, and constraints, and 3) document the framework

that generated the best possible set of decision alternatives.

To accomplish these goals, deference should be given to imputation and

solution search methods, regardless of the underlying model formulation, that

can 1) produce the best (unbiased minimum prediction variance) predictions

for fixed, but unknown target parameters (e.g. biomass, stems, species abun-

dance), 2) handle problems with multiple potentially competing and possibly
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non-commensurate objectives, which are common in complex supply chain

optimization problems in forest environments, 3) detect and communicate to

the practitioner, unique features of the solution space for further exploration

and exploitation (Ducheyne et al., 2006, 2004), and 4) require as few runs

as possible, preferably a single run, which allows a practitioner to select and

implement, an optimal plan within a time-sensitive environment.

To address these criteria, we present a framework for practitioners of pre-

cision forest planning that can 1) be formulated, implemented, and modified

using simple formulation, search, and analysis rules, 2) obtain the best set of

trade-offs among multiple objectives when the analysis time is limited, and

3) further refine the optimal set as time permits.

The format of the paper is to first introduce the nomenclature and in Sec-

tion 2.3, present the formulation for the framework. In Section 2.4, a small

non-linear mixed-integer multi-objective operational forest supply chain op-

timization problem is presented. Section 2.5 briefly presents the heuristic

developed by (Knowles and Corne, 2000) and describes the parameters used

to explore the optimal trade-offs or efficient frontier for the example problem.

Our results and a discussion of the heuristic’s performance and a short ex-

amination of some Pareto optimal precision production plans are graphically

generated in Section 2.6 followed by our conclusions, which are presented in

Section 2.7.

Nomenclature

Unknown values and random variables are denoted using lower and upper

case Greek symbols. Vectors and matrices are represented in bold.

Problem Formulation
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argmin f The arguments that achieve the global minimum of f
d The total number of objectives
Di The total distance traveled by a harvester on day i
D′ The total distance traveled
fi An individual objective function
f A vector of d objective functions
g Generation index
G Maximum number of generations
gk An inequality constraint
g A vector of K inequality constraints
hm An equality constraint
h A vector of M equality constraints
i Period number
j Stem number in daily cutting schedule
k Inequality constraint index
m Equality constraint index
K The total number of inequality constraints
λg The number of mutations (candidate solutions) at generation g
µg The Pareto optimal set at generation g
|µg| The size of the Pareto optimal set at generation g
M The total number of equality constraints
min f The global minimum of f
N The total number of observation locations
Ni The number of stems to be harvested on day i
ψ A scalar penalty function
r The length of the fixed and known values of the input data
vi The volume of stem i
Vi The volume harvested in period i
xi A fixed and known scalar input
ν The number of fixed but unknown variables in the inputs
ξi A fixed but unknown scalar input
x A vector of fixed and known inputs of length r
ξ A vector of fixed but unknown inputs of length ν

ξ̂ A vector of predicted fixed but unknown inputs

Operators and Miscellaneous Notation
0 A vector of zeros
R The real numbers
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C The complex numbers
fa ≺ fb Component-wise less-than vector inequality
∃,∈,⊂ exists, in, and subset
∨,∧,¬ logical OR, AND, and NEGATION operators
E[ · ],V[ · ],C[ · ]Expected value, variance, and covariance operator
Gk[ · ] Heaviside operator for inequality k (Osyczka, 2002)
C′, c′ transpose of matrix C or vector c
C−1 Inverse of C
F The feasible region
S The search space ⊂ Rr+ν

2.3 PROBLEM FORMULATIONS

Kuhn and Tucker (1951) introduced a vector-valued objective function in

mathematical programming called a vector maximum problem, and derived

the optimality conditions for efficient solutions (Coello Coello, 2002). Since

precision production planning in forest environments is often considered an

optimization task with more than one objective, the goal here is the mini-

mization of a general non-linear constrained deterministic d-objective prob-

lem (d ≥1), which can be expressed using the general formulation (Karush,

1939; Kuhn and Tucker, 1951; Osyczka, 2002; Zhang, 2003):

x∗ = argmin
x∈S

{f(x) ∈ Rd|g(x) ≥ 0,h(x) = 0} (2.1)

where the goal is to obtain the arguments x∗ that yield the minimum f , a

vector of d-objectives, subject to g, a vector of K inequality constraints, and

h, a vector of M equality constraints and the fitness of any candidate solution

x can be evaluated directly from the functions f , g, and h.

The feasible region, F is a subset of the entire search space S ⊂ Rr
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and F ⊆ S. For an inequality constraint that satisfies gk(x) = 0, then the

inequality k is active at x. All equality constraints hm(x) are considered

active at all values of F , regardless of the value of x (Bishop, 2006).

For problems with potentially competing and possibly non-commensurate

objectives (i.e. d > 1), an objective vector fa is said to dominate another

objective vector fb, denoted by fa ≺ fb (component-wise), if and only if:

fa,i ≤ fb,i ∀ i ∈ {1, . . . , d} ∧ fa,j < fb,j ∃ j ∈ {1, . . . , d} (2.2)

In words, an objective vector is called non-dominated if there are no other

objective vectors that can increase the value of any one of the d objective

functions without decreasing the value of another of the d objective functions.

The set of all non-dominated solutions is called the Pareto set, Pareto front

or efficient frontier (Eiben and Smith, 2003).

When all of the inputs are known without uncertainty, Equations (2.1)

and (2.2) can be used to examine the trade-offs among Pareto optimal policies

which satisfy the goals of a decision maker (Deb, 2001). More often than not,

the inputs for forest planning problems contain a combination of r fixed and

known values (e.g. supply and delivery locations or tree measurements) and

ν estimates for fixed, but unknown values (e.g. yield estimates or demand

forecasts), which can be expressed by a r + ν partitioned vector:

(x, ξ) = (x1, x2, . . . , xr, ξr+1, ξr+2, . . . , ξr+ν) (2.3)

where the values x1, x2, . . . , xr are the fixed and known inputs and ξr+1,

ξr+2, . . . , ξr+ν are random variables, used to represent a guess for the last ν

fixed, but unknown inputs, given the first r fixed and known values of the

data. When an optimization problem contains fixed, but unknown values,

represented by a random vector for some subset of the inputs, the resulting
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formulation is a stochastic optimization problem (Gen and Cheng, 1997).

A stochastic optimization problem can be expressed by letting ξ = (ξr+1,

ξr+2, . . . , ξr+ν) be the random vector of fixed, but unknown inputs, with the

joint probability mass function φ, defined by x:

φx(ξ) = φx1,...,xr(ξr+1, . . . , ξr+ν) (2.4)

Since the maximization or minimization of a random vector or random

function itself is meaningless, Equation (2.1), now a non-linear constrained

stochastic d-objective (d ≥1) minimization problem:

x∗ = argmin
x∈Rr+ν

{E[f(x, ξ)] ∈ Rd|E[g(x, ξ)] ≥ 0,E[h(x, ξ)] = 0} (2.5)

can be solved using a deterministic-substitution formulation (Marti, 2005)

where the goal is to obtain risk-neutral (e.g. expected value) optimal crite-

rion, and E[f(x, ξ)], E[g(x, ξ)], and E[h(x, ξ)] are estimated from x and φx(ξ)

using a priori, sample, and structural information since x contains all known

information available to the decision maker. The available information in-

cludes inputs such as product yields, forest conditions, spatial relationships,

current management policies, desired objectives, and constraints, and any

functions thereof.

The resulting expected values for the functions in Equation (2.5) are:

E[fi(x, ξ)] =
∑

ξr+ν
· · ·

∑
ξr+2

∑
ξr+1

fi(x, ξ)φx(ξ) ∀ i = 1, . . . , d(2.6)

E[gk(x, ξ)] =
∑

ξr+ν
· · ·

∑
ξr+2

∑
ξr+1

gk(x, ξ)φx(ξ) ∀ k = 1, . . . , K(2.7)

E[hm(x, ξ)] =
∑

ξr+ν
· · ·

∑
ξr+2

∑
ξr+1

hm(x, ξ)φx(ξ) ∀ m = 1, . . . ,M(2.8)
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Here we assume that the expected values can be estimated without bias

and so, to conserve notation, we will express the general formulation as:

x∗ = argmin
x∈Rr+ν

{f(x, ξ̂) ∈ Rd|g(x, ξ̂) ≥ 0,h(x, ξ̂) = 0} (2.9)

where f , g, and h are now defined as statistical or econometric models of the

data (Konishi and Kitagawa, 2008), which can also be viewed as optimization

models themselves (White, 1999).

We now present a small multi-objective non-linear mixed-integer oper-

ational supply chain optimization problem that contains fixed and known

inputs x, and fixed, but unknown inputs ξ.

2.4 AN EXAMPLE

The goal is to determine the best plan (i.e. a set of daily cutting schedules)

for a three day harvest operation where a finite population of stems T , within

a harvest polygon A, are assigned either a harvest day-order combination, or

a selected to remain in A (i.e no-harvest). The polygon A is defined by the

rectangle with lower-left and upper-right corners of (55, 125) and (80, 145)

distance units, respectively for a total surface area of 500 distance units

squared.

The dataset for this problem, presented in Table 2.1, contains eight stems

(N = 8), with seven of the stems having perfectly measured volumes (T v)

and perfectly known positions (T u). The eighth stem, contains a known

position, and a fixed but unknown volume, and so we do not know the total

VA ≡
∑N

i=1 T v
i or the spatial mean V A ≡ λ(A)−1VA, where λ(A) is a function

that returns the surface area of the polygon A.
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Stem, i Location, T u Volume, T v Day, d Sequence, s
1 (61,139) 477 d1 s1

2 (63,140) 696 d2 s2

3 (64,129) 227 d3 s3

4 (68,128) 646 d4 s4

5 (71,140) 606 d5 s5

6 (73,141) 791 d6 s6

7 (75,128) 783 d7 s7

8 (65,137) v8 d8 s8

Table. 2.1: Data from Table 12.1 in Isaaks and Srivastava (1989). The vari-
able v8 represents the fixed but unknown value for the unobserved
volume associated with the eighth stem. The column vectors d
and s represent the decision variables for which day and order to
harvest stem i.

The objectives are to 1) obtain the best (i.e. unbiased minimum predic-

tion variance) stem volume predictions for unmeasured stems, 2) minimize

constraint violations, 3) maximize daily production subject to demand con-

straints, 4) minimize the residual volume while meeting retention tree re-

quirements, 5) minimize soil disturbance, and 6) provides to the practitioner

the best set of possible choices for implementation.

The constraint requirements are such that 1) in order to meet contractual

obligations, the delivered volumes meet or exceed 1100, 800, and 1200 volume

units, for each of the three days, 2) the soil disturbance is minimized in order

to maintain the soil resource as defined in the Montreal Protocol (Block et al.,

2002), and 3) the plan meet certification standards by maintaining at least

300 volume units (i.e. reserve stems) in A (Stringer, 2006).
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2.4.1 Formulation

The problem can be expressed using the general formulation:

x∗ = argmin
x∈Rr+ν

{f(x, ξ̂) ∈ Rd|g(x, ξ̂) ≥ 0,h(x, ξ̂) = 0} (2.10)

where ξ̂ are predictions from the best unbiased minimum variance predictors

for ξ, determined from x and the probability mass function φx(ξ), defined

by the decision maker.

Since the temporal scale of the operation is sufficiently short so that

repeated measurements of the volume for stem eight yield the same value

(e.g. no growth or measurement error), the volume for stem eight (T v
8 ) is the

only fixed, but unknown input in the vector ξ, in which the prediction will

be denoted as ξ̂.

The variables representing harvest day and harvest sequence are the de-

cision variables, which are known and fixed inputs as they are dictated by

the decision maker. A decision to harvest a stem on day four represents a

decision to set aside the stem as a residual (e.g. green tree retention or legacy

stem), thus the decision variables, determined by the decision maker, are the

elements of x, a (6 × 8) − 1 row vector representing the fixed and known

inputs and ξ representing T v
8 , the last (ν = 1) element which is a fixed, but

unknown input. To reduce the notation, we denote T v
i as vi, T

u
i as ui, T

d
i as

di and T s
i as si.
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2.4.1.1 Objective 1: Unbiased minimum variance predictions for volume

The first objective is to predict the actual stem volume, v8, which can be

accomplished by adding structural information to the formulation in order

to obtain v̂8 from the best unbiased minimum variance estimator (Cressie,

1993).

Here, we assume stem volumes are point realizations from a random field

VA over a finite area, A, which accounts for both local irregularities (e.g.

randomness) and a structured aspect (e.g. large scale tendencies) and the

that for any distance |h| = |ui−uj|, the distribution of the random variables

V (u1), V (u2), . . . , V (uk) is the same as V (u1 + h), V (u2 + h), . . . , V (uk + h)

for the first two moments (i.e. constant mean and covariance) (Reed and

Burkhart, 1985). These assumptions, known as second-order stationarity,

are critical in determining the optimal weights so that the prediction at some

unsampled location u0, over a region A, is unbiased (E[V̂A−VA] = 0) and the

error or prediction variance (V ar[V̂A − VA]) is minimum (Armstrong, 1998).

These assumptions and procedures are often used to describe spatial and

temporal processes in forest inventory (Hudak et al., 2002; Wallerman et al.,

2002; Tuominen et al., 2003), forest operations optimization (Hof and Bevers,

1998; Mandallaz, 2000; Hamann and Boston, 2007), and heuristics (Hyoun-

Jin et al., 2005).

Using these assumptions, the additional structural information included

in the formulation can be defined as:

v̂8 =
7∑

i=1

ωiv(ui) (2.11)

where the predicted stem volume for stem eight, v̂8, is a weighted linear com-

bination of the nearby seven stem volumes and the distances that separate
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them, ui is the position of the i -th nearby stem, v(ui) is the i -th realization

of the regionalized variable VA(u) at location ui, and ωi is the weight applied

to the observed value at position ui (Isaaks and Srivastava, 1989).

The first objective then becomes to select the weights that yield the best

(i.e. unbiased minimum prediction variance) prediction for v8, subject to the

unbiasedness constraint (
∑n

i=1 ωi = 1), which can be expressed as a set of

n+ 1 equality constraints using Equation (2.5):

hi(x, ξ̂) ≡
∑n

j=1 ωjĈij + λ− Ĉi,8 = 0 for i = 1, . . . , N (2.12)

hN+1(x, ξ̂) ≡
∑n

i=1 ωi − 1 = 0 (2.13)

where N = 7, the number of observed stem volumes, ωi are the kriging

weights and λ is the Lagrangian parameter, required to convert the con-

strained minimization problem into an unconstrained problem for this ob-

jective (Boyd and Vandenberghe, 2004; Bishop, 2006), and maintains unbi-

asedness when the weights sum to one. Here, the spatial covariance model,

Ĉij, defined by Isaaks and Srivastava (1989), is an exponential function:

Ĉij = 10e−0.3 · |h| where |h| is the distance separating stem i and j.

Alternatively, the system of n+1 kriging equations can be expressed more

compactly in matrix notation as:
Ĉ11 . . . Ĉ1,n 1
...

. . .
...

...

Ĉn1 . . . Ĉn,n 1
1 . . . 1 0



ω1
...
ωn

λ

−

Ĉ1,8

...

Ĉn,8

1

 =


0
...
0
0

 (2.14)

or more simply:

Cω−D = 0 (2.15)
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where ω is the vector of weights, C is the covariance matrix of the observa-

tions and D is the vector of the covariances at the points themselves, that

is, C(h) = 0 where h is the distance between sample points, or in this case

stems, and 0 is a n + 1 vector of zeros. This generates a system of n + 1

equations that can be easily solved for C−1 to obtain the weights ω:

ω = C−1D (2.16)

provided C is a positive definite function (x′Ax > 0;A,x ∈ Cn), where the

resulting values for ω produce the unbiased predictions with the minimum

prediction variance (Cressie, 1993).

2.4.1.2 Objective 2: Minimize constraint violations

Ideally, all production plans must not violate any constraints, or should

a particular plan be infeasible, constraint violations should be minimal and

for infeasible solutions, the decision maker should know the magnitude of the

constraint violations for a given candidate solution.

To ensure that an objective vector, for any given candidate solution, is

as close as possible to, or is within the feasible region, a constraint viola-

tion function, defined by (Osyczka, 2002), is included as the first objective

function:

f1(x, ξ̂) ≡ ψ ≡
M∑

m=1

hm(x, ξ̂)2 +
K∑

k=1

Gk[gk(x, ξ̂)]2 (2.17)
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where Gk is defined as:

Gk =

{
0 for gk(x, ξ̂) ≥ 0

1 for gk(x, ξ̂) < 0
(2.18)

so that when the predicted value of the first objective, f1(x, ξ̂), equals zero,

the candidate solution yields an objective vector f(x, ξ̂) within, or on the

boundary of the feasible region F .

2.4.1.3 Objective 3: Maximize production

The predicted value for the volume produced during each day can be

defined as a set of equality constraints:

h1(x, ξ̂) ≡
∑N1

j=1 v̂1,j − V̂1 = 0 (2.19)

h2(x, ξ̂) ≡
∑N2

j=1 v̂2,j − V̂2 = 0 (2.20)

h3(x, ξ̂) ≡
∑N3

j=1 v̂3,j − V̂3 = 0 (2.21)

where v̂i,j is the predicted volume of stem i, harvested on day j, and Nj

is the number of stems harvested on day j. These equality constraints are

constructed as ”accounting variables” since the values are required for the

formulation of both objective functions and inequality constraints.

The objective to maximize daily production, can then be expressed as

three separate objectives:



23

f2(x, ξ̂) ≡ −V̂1 (2.22)

f3(x, ξ̂) ≡ −V̂2 (2.23)

f4(x, ξ̂) ≡ −V̂3 (2.24)

and in order to meet the demand constraints listed above, a set of inequality

constraints is included:

g1(x, ξ̂) ≡ V̂1 − 1100.0 ≥ 0 (2.25)

g2(x, ξ̂) ≡ V̂2 − 800.0 ≥ 0 (2.26)

g3(x, ξ̂) ≡ V̂3 − 1200.0 ≥ 0 (2.27)

2.4.1.4 Objective 4: Minimize residual standing volume

Another common goal in forest planning is to maximize the unharvested

area, or maximize the green-tree retention, which here we describe as unhar-

vested volume. Thus, another goal is then to minimize the residual volume

in A, another equality constraint is needed to account for the stem volume

assigned to the residual volume, is defined as:

hh(x, ξ̂) ≡
N4∑
j=1

v4,j − V̂4 = 0 (2.28)

and to minimize the residual volume, an objective is included as:

f5(x, ξ̂) ≡ V̂4 (2.29)
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Finally, one additional inequality constraint is required to ensure that at

least 300 volume units remain within A upon completion of the operation:

g4(x, ξ̂) ≡ V̂4 − 300.0 ≥ 0 (2.30)

2.4.1.5 Objective 5: Minimize soil disturbance

Many methods exist to reduce soil degradation during forest operations

such as seasonal constraints, limiting the number of machine passes, or maxi-

mum ground pressure constraints. To minimize soil disturbance, we included

an objective function to minimize the total soil contact, expressed as a tour

that a single machine would take to visit each harvested stem, for a given se-

quence, over the planning horizon. This minimization of the tour distance is

more commonly known as a traveling salesman problem (TSP) has been used

widely in single objective (Lin and Kernighan, 1973; Lawler et al., 1985) and

multi-objective planning problems (Yan et al., 2003; Michalewicz and Fogel,

2004).

Beginning with the first stem in the sequence for each day, the distance

traveled, each day, is the distance required to travel a path to each stem in

the cut sequence for the day, which can be expressed as a set of equality

constraints.

The daily travel distance is defined as:

Di =

Ni∑
j=1

√
(xi,j − xi,j+1)2 + (yi,j − yi,j+1)2 i = 1, 2, 3, j = 1, . . . , Ni − 1

(2.31)
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plus the distance required to travel from the last stem, on day i, Ni, to the

first stem of the next day:

Di = Di +
√

(xi,Ni
− xi+1,1)2 + (yi,Ni

− yi+1,1)2 i = 1, 2 (2.32)

where x and y are the easting and northing of the each stem in the daily

cutting schedule, respectively. Since all locations are known without error,

the expected value of the length of any path is a constant, and so the objective

to minimize the total machine travel distance is simply:

f6(x, ξ̂) ≡ D
′ ≡

3∑
i=1

Di i = 1, 2, 3 (2.33)

and for periods with no stems harvested, the distance from the previously

ending position to the next day’s starting position is used.

2.4.1.6 Complete Formulation

The complete formulation of the problem is:

x∗ = argmin
x∈Rr+ν

{f(x, ξ̂) ∈ Rd|g(x, ξ̂) ≥ 0,h(x, ξ̂) = 0} (2.34)

where the elements of the objective vector, f , are:

f(x, ξ̂) = (ψ,−V̂1,−V̂2,−V̂3, V̂4, D
′
) (2.35)

subject to (K = 4) inequality constraints, g:
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g1(x, ξ̂) ≡ V̂1 − 1100.0 ≥ 0 (2.36)

g2(x, ξ̂) ≡ V̂2 − 800.0 ≥ 0 (2.37)

g3(x, ξ̂) ≡ V̂3 − 1200.0 ≥ 0 (2.38)

g4(x, ξ̂) ≡ V̂4 − 300.0 ≥ 0 (2.39)

and the (M = 13) equality constraints, h:

hi(x, ξ̂) ≡
∑n

j=1 ωjĈi,j + λ− Ĉi,8 = 0 for i = 1, . . . , N (2.40)

hN+1(x, ξ̂) ≡
∑n

i=1 ωi − 1 = 0 (2.41)

hN+2(x, ξ̂) ≡
∑N1

j=1 v1,j − V̂1 = 0 (2.42)

hN+3(x, ξ̂) ≡
∑N2

j=1 v2,j − V̂2 = 0 (2.43)

hN+4(x, ξ̂) ≡
∑N3

j=1 v3,j − V̂3 = 0 (2.44)

hN+5(x, ξ̂) ≡
∑N4

j=1 v4,j − V̂4 = 0 (2.45)

2.5 HEURISTIC DESCRIPTION

While exact solution methods for spatially explicit planning formulations

have been presented for problems with two objectives, examples of exact so-

lution methods for formulations in higher dimensions (d ≥ 2) are limited and

many techniques are incapable of handling complex Pareto frontiers (Tóth

et al., 2006). For multiple objective formulations, heuristic methods such as

Tabu Search (TS) (Hansen, 1997), Simulated Annealing (SA) (Deusen, 1999;

Nam and Park, 2000), Genetic Algorithms (GA), (Ducheyne et al., 2004),

and Evolutionary Algorithms (Stewart et al., 2004; Ducheyne et al., 2006)

where d ≥ 2, while rare in forest planning, show promise.
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The class of heuristics known as Evolutionary Algorithms (EA), inspired

from Darwinian evolution, selects, mutates and promotes candidate solutions

based on competition, fitness, and reproductive success (Eiben and Smith,

2003; Falcão and Borges, 2001). The major difference between GA and EA

results from the use of the mutation operator. In GA, the crossover operator

is used to promote both diversification and intensification, whereas EAs rely

on the mutation operator alone to change mutation parameters depending

on a variety of metrics such as convergence (Igel et al., 2007), stopping (Lau-

manns et al., 2002), diversification (Farhang-Mehr and Azarm, 2002), and

optimality (Deb et al., 2007) criteria.

Several comprehensive reviews of multi-objective evolutionary algorithms

are available from Coello Coello (2002), Tan et al. (2005), and Deb (2001) and

all suggest that evolutionary algorithms have many advantages for high di-

mensional vector valued problems with potentially highly disconnected, non-

uniformly distributed, and concave Pareto frontiers. In forest planning how-

ever, examination of EA for single objective (Falcão and Borges, 2001) and

multi-objective (Ducheyne et al., 2004) formulations are rare. To examine

the applicability, behavior, and performance of a generalized multi-objective

evolutionary algorithm (MOEA), the evolutionary algorithm presented by

(Knowles and Corne, 2000) was used to solve the formulation in Section 2.5.

The (µ+ λ)-Pareto Archive Evolution Strategy ((µ+ λ)-PAES), requires

no assumptions about the decision maker or their preferences in the form of

weights or scaling factors to reduce the solution space to a scalar function

(Steuer, 1985). The method, presented in Algorithm 1, is an elitest strat-

egy, which guarantees convergence (Rudolph and Agapie, 2000), is simple

to program, generates λ mutations at each generation, maintains a set of µ

non-dominated solutions throughout the search, and has been shown to work
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well for multitude of Pareto front types (Tan et al., 2005).

The initial population of λ candidate solutions are generated randomly

and evaluated using the formulations presented in Section 2.3. The set of

initial λ candidate solutions are then added to the Pareto archive (i.e. µ = λ).

A scalar rank is then assigned to each candidate solution, where the rank is

defined as the number of µ + λ individuals that dominate the candidate

solution. When there are no solutions that dominate the candidate solution,

(i.e. non-dominated) a rank of 0 is assigned to the candidate solution. All

candidate solutions with rank > 0 are then removed from the archive (i.e.

dominated). The remaining non-dominated (µ) candidate solutions, which

define the current Pareto frontier, are then selected for promotion and further

mutation.

Selection for promotion is performed using tournament selection where a

set of h candidate solutions enter a tournament and a single winner is se-

lected with probability p (Dumitrescu et al., 2000). We used deterministic

binary tournaments (h = 2, p = 1), where two solutions are selected with uni-

form probability from the Pareto archive (i.e. uniform, P (Sel = 1) = 1/|µ|),
and one of two candidate solutions is selected, with a probability of one, to

be copied into the population buffer (λ) for promotion and mutation. The

number of individual objectives that dominated the tournament for each can-

didate solution determined the winner with probability of one. In the event

of a tie (i.e. weakly non-dominated), the first contestant was deemed the win-

ner. The process of selection, promotion, and mutation is performed until

some stopping criteria is met. For this manuscript, we used a deterministic

stopping criteria defined by the number of generations (Deb, 2001).

Since a portion of the input data for the problem is a constant regardless

of the values of the decision variables needed to evaluate a specific candidate
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solution, the decision vector included only variables for the day and sequence

combination:

xc = 〈d1, . . . , di, . . . , d8, s1, . . . , si, . . . , s8, σ〉 (2.46)

where d1, . . . , di, . . . , d8 represents the harvest/reserve day in which to assign

stem i, and s1, . . . , si, . . . , s8 represents the sequence on which harvest day

the stem is to be harvested on day di.

The last entry in the candidate solution, σ represents the probability of

mutation for an individual candidate solution, which in this example, was

examined for three different values (0.01,0.05,0.1). The evolution strategy

parameters are presented in Table 2.2.

To examine the behavior and performance of the heuristic, 1000 replica-

tions were performed for each of the three mutation rates and population

sizes listed in Table 2.2 as is suggested by Bartz-Beielstein (2006) and Bang-

Jensen et al. (2007).

2.6 RESULTS AND DISCUSSION

The results and discussion presented here contains a brief presentation

of the geostatistical method used to predict the volume for stem eight, v̂8,

followed by a discussion of the behavior and performance of the heuristic.

Finally, we present a detailed discussion of a single non-dominated solution

as would be the case in many operational organizations, where only one

Pareto optimal solution that meets the multiple objectives of the decision

maker is selected for implementation.
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Data: x, ξ̂, f(x, ξ̂),g(x, ξ̂),h(x, ξ̂)
Data: field data, yield estimates,objective and constraint formulae,

software
Result: (µ+λ)-PAES Multi-Objective Evolutionary Algorithm

(Knowles and Corne, 2000)
g ← 1;
µg = ∅;
λg ← GenerateRandom();
Evaluate(λg);
µg ← UpdateParetoArchive(λg);
for g ← 2 to G do

λg ← SelectCandidatesFromArchive(µg−1);
λg ←Mutate(λg);
Evaluate(λg);
µg ← UpdateParetoArchive(λg);

end
ExportArchive(µG);

Algorithm 1: Pareto archiving multi-objective evolutionary algorithm.

Parameter Specification
Representation Real/Integer-valued vector
Population size 10, 50, and 100 Candidate solutions
Generations 1000
Recombination None
Mutation 1%, 5%, and 10%
Parent Selection Uniform random
Tournament type Binary deterministic (k=2,p=1)
Survivor Selection (µ+ λ)-PAES
Specialty None
Stopping Criteria 1000 generations

Table. 2.2: Evolution strategy parameters.
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2.6.1 Optimal prediction of spatially correlated inputs

Since the first objective was to obtain the best input (i.e. unbiased min-

imum error variance prediction) for the missing stem volume, regardless of

the solution methodology, the system of n+1 ordinary kriging equations was

solved independently (Cressie, 1993). It should be noted here that ordinary

kriging is normally used for situations where the regionalized variable of in-

terest is continuous with an unknown mean (Isaaks and Srivastava, 1989).

Rather than create a realistically complex prediction situation, ordinary krig-

ing was used to reduce formulation complexity while remaining consistent

with the support of the decision variables (i.e. individual tree or point sup-

port). The resulting unbiased minimum variance prediction for the volume

of stem eight was ξ̂ ≡ v̂8 =592.729 volume units. The accompanying mini-

mum prediction variance was 8.956 volume units squared, which, while not

used here, can be used for chance constraints and probability maximization

formulations (Hof et al., 1992).

The ability to determine the best unbiased minimum variance predictions

and solve the optimization formulation simultaneously has both advantages

and disadvantages. One advantage is that both the prediction method for

missing observations and the solution method for the optimization problem

are connected in both documentation via formulation and the computer pro-

cedures used to solve them. Should the outputs agree with results from

independently predicted values, this should give credence to the method.

For more realistic problems, the decision maker can refine the formulation

by adding imputation metrics for missing values, (Little and Rubin, 2002),

more complex kriging methods for both finite populations (Hoef, 2002), in-

finite populations (Goovaerts, 1997), chance-constraints (Hof et al., 1992),
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and probability objectives (Hof and Bevers, 1994, 1998).

The disadvantage of this method is that, if the decision variables, or func-

tions thereof, are independent of the fixed, but unknown input values, then

solving the prediction problem and the optimization problem simultaneously

with each run, unnecessarily increases the solution time for a given anal-

ysis and creates a situation where the predictions for the unknown inputs

between heuristic runs may not be consistent, which is undesirable when

alternatives are compared among heuristic outputs or several runs (Bartz-

Beielstein, 2006).

2.6.2 Heuristic behavior and performance

While the mutation rate and population size parameters are typically the

variables of interest in evolutionary computation research (Bartz-Beielstein,

2006), we fixed the mutation rate and population sizes for each run to 1)

minimize potentially confounding factors that might arise from dynamically

modifying the mutation rate and population sizes, and 2) because, for a given

population size, there are endless methods in which the mutation rate could

have been modified. To examine the effectiveness of the heuristic, we now

briefly discuss the heuristic’s ability to search S, which contained 465 global

Pareto optimal solutions (see Appendix A), by examining the size of the

Pareto archive and the rate at which non-dominated solutions are ejected

from the Pareto archive as a result of mutation, selection pressure, and the

”learning rate”.
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2.6.2.1 Pareto frontier approximation

Figure 2.1 shows the the size of the Pareto archive (e.g. non-dominated

solutions) at the end of every fiftieth generation for the three mutation rates

(σ ∈ {0.01, 0.05, 0.1}) and population sizes (λ ∈ {10, 50, 100}). This value

represents the number of solutions that have dominated all previous µ non-

dominated and λ mutated candidate solutions. The lowest population buffer

size (λ = 10) yielded the lowest non-dominated solution discovery rates ev-

ident by lowest slopes of the mean number of discovered non-dominated

solutions. Interestingly, the lowest population size and mutation rate also

produced local optima as is evident by the number of runs that resulted in

Pareto sets with more solutions than the global set suggesting that this com-

bination was insufficient for determining the actual frontier. The number of

Pareto solutions discovered increased with the mutation rate, for all three

population sizes, suggesting that the rate at which the number of solutions

were added to the archive was constant over the run.

The rate at which new non-dominated solutions entered the Pareto archive

was approximately constant (i.e. linear) until the population of candidate so-

lutions reached 50 with a mutation rate of 0.01. On average, a decrease in the

”discovery rate” is apparent near the middle of a run of 1000 generations as is

evident by the change from a linear to a curvilinear form in higher population

sizes and mutation rates. For the highest mutation rate, the discovery of the

Pareto optimal solutions increased, and then again, slowed quickly by the end

of the first quarter of the runs. The variance of the number of non-dominated

solutions discovered, decreased as the population size and mutation rates in-

creased. The variation decreased most rapidly for the higher mutation rates

near the end of the runs, indicative of convergence. These patterns suggests
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Figure. 2.1: Box and whisker plot of the number of non-dominated Pareto
optimal solutions for three candiate solution population sizes λ ∈
{10, 50, 100} and the three mutation rates σ ∈ {0.01, 0.05, 0.1}
every 50th generation. The dashed line represents the size of the
global optimal Pareto set of 465 solutions.
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that the mutation rate, when combined with the population size, has more

influence on the rate at which the search ”learns” new non-dominated so-

lutions than does the size of the population alone. This is evident in the

pattern of curvature within the population sizes. For small population sizes,

the slope of the median number of non-dominated solutions was constant

while the slope becomes more curvilinear as both the population and the

mutation rate increase.

2.6.2.2 Mutation Efficiency

Since Pareto candidate solutions were selected for promotion with equal

probability, at each generation, we examined the ratio at which the non-

dominated solutions were dominated by new mutations (Figure 2.2). We de-

fine the mutation efficiency as the ratio of the total number of non-dominated

solutions originating from the archive over the number of non-dominated solu-

tions from both the candidate population and the existing archive. A higher

value is indicative that the search is not generating dominating mutations

and so, the progress is slow. A low value indicates that the mutation process

is generating solutions that displace non-dominated solutions in the Pareto

archive. The ratio is similar to the ”progress ratio”, as presented by (Tan

et al., 2005), but is not a moving average nor was it used as a stopping

criteria. More comprehensive stopping criteria for multi-objective heuristics

are presented in the machine learning and evolutionary algorithm literature

(Mansour and Schain, 1997; Farhang-Mehr and Azarm, 2002; Zhang, 2003).

For all population sizes and mutation rates, the search effectiveness ap-

peared to slow early in the search suggesting that a change in the mutation
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Figure. 2.2: Box and whisker plot of the mutation efficiency for three can-
didate solution population sizes λ ∈ {10, 50, 100} and the
three mutation rates σ ∈ {0.01, 0.05, 0.1} every 50th genera-
tion. A flat slope means that few mutations have displaced non-
dominated solutions in the Pareto archive which indicates the
search progress is slow.
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strategy may be beneficial. An asymptote near unity was pronounced for

all nine combinations of population size and mutation rate. For the smallest

population size (i.e. 10 candidate solutions), all three mutation probability

rates yielded a higher number of function evaluations than did larger popula-

tions. The larger population sizes however, resulted faster convergence rates

(i.e. more overall mutations) and thus ultimately more exhaustive searches.

Since the goal here was a general examination of the (µ + λ)-PAES and

not metrics such as the mutation operator, the plot in Figure 2.2 reveals that

the mutation operator effectiveness can be examined over time, and used as

means of selecting mutation strategies (Deb, 2001), determining candidate

population sizes (Coello Coello and Toscano Pulido, 2001), or as a stopping

criteria (Tan et al., 2005).

2.6.3 Optimal operational plans

To examine a specific set of Pareto optimal solutions, as would be the

case in an operational environment, the run with the highest number of dis-

covered non-dominated solutions was selected for further examination. Be-

ginning with a matrix plot, as suggested by Deb (2001), no discernible single

plan appeared uniquely sufficient to be declared an ”obvious” choice for im-

plementation (Figure 2.3).

The selected run contained 408 solutions (87.742 percent of the global

Pareto optimal set), where each solution represents a different optimal oper-

ational plan. It is important to note again that a single run of the heuristic

generated the 408 best possible plans from which any single plan from the

Pareto optimal set yields an optimal solution subject to the time constraints

of the analysis. This allows the decision maker to have a documented analysis
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Figure. 2.3: Matrix plot of the Pareto optimal set.
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of the trade-offs that does not require direct assignment of weights or prefer-

ences as do exact solution methods thus reducing potential anthropocentric

biases without having to completely enumerate the solution space.

Figure 2.3 reveals a variety of patterns among the Pareto set for this

small problem. A relationship among the daily volume production values

can be observed for the top left block of scatter plot matrix. The Pareto

frontier is visible as a diagonal boundary among the three daily production

volumes for the three days, V̂1, V̂2, and V̂3, respectively. The distribution of

the residual volumes, (V̂4) is minimized, for a given solution, as represented

by the vertical cluster on the left (lower end of the variable), demonstrating

that the set of solutions yields a residual volume that is as low as possible,

while still meeting the target of 300 volume units over A. A pattern in

the objective to minimize the total distance is less pronounced, but there

does appear to be a weak relationship between the residual volume and the

distance a machine must travel in the Pareto set. For larger datasets and

problems, a stronger relationship between the distance and production may

be more pronounced.

A query of the selected Pareto set was performed to determine how the

different plans maximized or minimized the various objectives. There were

2, 5, and 3 plans that maximized daily production, for each of the three

production periods, respectively and 1 plan that minimized machine travel

distance (see Table 2.6.3). There were 371 plans that minimized the residual

volume at it’s lowest possible level while remaining feasible. These solutions

have been removed from Table 2.6.3 for brevity. All 408 plans did not violate

any of the constraints (ψi = 0 ∀ i ∈ |λG|).
Finally, in order to further understand the trade-offs among the various

optimal plans, the machine paths for the three solutions that maximized
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Figure. 2.4: The three machine routes presented in the upper left, upper
right, and lower left maximize V̂1, V̂2, and V̂3, or daily delivered
volume objectives for days one, two, and three respectively. The
one tour that minimizes the soil disturbance is presented in the
lower right. Stems to be harvested on the same day are con-
nected with solid arrows and the dashed arrow is the path the
machine takes at the end of the period to reposition for the next
day. Stems not on the machine’s path are reserve stems. The
triangle represents the only fixed, but unknown stem volume in
the dataset, which was predicted using ordinary kriging.
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daily volume production and one that minimized the distance objective were

plotted (Figure 2.4). For each of the objectives, the solution that was first

in the partially ordered set was selected for plotting. The routes for the

plans that maximized the daily production for the three days are plotted

in the upper half and lower left in Figure 2.4. The plots of each route are

represented by solid and dashed lines where the solid lines represent the daily

route among the stem locations and the dashed lines represent the path the

harvester must take to move from the last stem of the day to the first stem

of the next.

The plan that minimized the soil disturbance (i.e. total soil contact)

regardless of the daily production volume, is plotted in the lower right of

Figure 2.4. This solution had the shortest travel distance over all solutions

while also meeting the constraints. For a majority of the plans, stem one was

marked as the only reserve stem as it was the only stem that had enough

volume to meet the reserve volume constraint by itself while meeting the

other constraints as well.

2.7 CONCLUSIONS

The framework and heuristic presented here can be used to formulate and

solve complex non-linear mixed-integer supply chain planning and optimiza-

tion problems with potentially competing and non-commensurate multiple

objectives which are common in strategic, tactical, and operational forest

planning. The objectives and constraints can be constructed using simple

formulas that may contain commonly used logical operators and can include

both deterministic and stochastic components. By using a Pareto archive

evolution strategy, the resulting set of non-dominated Pareto optimal solu-
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tions, can 1) be reported at any point during a solution process, 2) be refined

by reloading the Pareto archive and continuing the search, 3) be used to

modify mutation strategies, 4) be used determine the stopping criteria, 5)

be guaranteed to converge given sufficient running time, and 6) facilitate

an understanding of the relationships (e.g. elasticity) among the potential

decisions and their inputs.

The features of this method are beneficial for practitioners who might

be unfamiliar with the minutiae of a particular problem formulation, solu-

tion method, and constraint set. The framework allows the decision maker

to examine the consequences of optimal alternatives, for various datum sup-

ports (i.e. tree models, stand tables, or forest models), with a single run of

the heuristic without assigning anthropocentric weights or preferences as is

common in other multi-objective methods. The method shows promise in

situations where a quick examination of the trade-offs is required, possibly to

be refined later, as might be the case in ”roundtable” policy analysis type en-

vironments, fast paced production environments, or highly variable decision

spaces.

As the focus was on the basic formulation and the search procedure, a

detailed examination of the influence of the mutation and selection operators

on solution quality and times were not reported. The solution time for each

of the 4500 runs was less than one minute, which was considerably faster than

the 341.39 hours required to completely enumerate S. The need to exam-

ine mutation operators, selection operators, and methods to visualize Pareto

frontiers in forest planning problems is large indeed, as there are many com-

plex relationships among input data, decision variables, and policies defined

by f , g, and h and is the subject of future research.
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3. AN EXAMINATION OF DESIGN-BASED AND MODEL-BASED

SAMPLING FOR PRIMARY FOREST PRODUCTS SUPPLY CHAIN

PLANNING AND OPTIMIZATION

3.1 ABSTRACT

We compare and discuss the performance of design-based estimation and

model-based prediction on the primary forest products supply chain, specif-

ically, the communication and information network system as defined by

Riopel et al. (2005). Specifically, we examine and compare the characteris-

tics and performance of design-based estimation and model-based prediction

for guessing the total volume within a finite area (8.24 ha) for four sampling

location patterns (random placement, rectangular, non-aligned rectangular,

and hexagonal grids), four spatial correlation models, for nine target sample

location counts M ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50}.
For each combination of sample size, sample location pattern, and as-

sumed spatial model, we generated 1000 replications, with and without edge-

bias correction, from which we examine the design-based estimator developed

by Horvitz and Thompson (1952). For model-based predictions, we used or-

dinary kriging (Cressie, 1993a), where the spatial correlation was defined

using either a one parameter linear (LIN), a one-parameter spherical (SPH),

or a two parameter exponential (EXP) variogram model.

We present the results of the estimation or prediction bias, a computed

standard error, and finally the root mean squared error (RMSE), using box-

and-whisker plots over the target sample sizes. Visually, performance gains

resulting from non-edge-corrected model-based predictions were negligible.

However, edge-corrected model-based predictors were superior, in every case,
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to both edge-corrected design-based estimations and model-based predic-

tions indicating that significant gains in sampling efficiency and the utility

of the output data can be obtained by the inclusion of simple spatial correla-

tion models and edge-correction, regardless of the selected spatial correlation

model selected.

3.2 INTRODUCTION

Decision support and optimization models for precision forest operations

require inputs such as the density of stems (i.e. stems ha−1), volume density

(i.e. m3ha−1), and mean stem volume (i.e. m3), within a finite area, in order

to determine a set of potential plans that minimize costs (Clark et al., 2000),

maximize revenue (Vera et al., 2003), minimize environmental deterioration

(Gjedtjernet, 1995), minimize portfolio risk (Reeves and Haight, 2000) or

some combination thereof (Connaughton and Fight, 1984; Ducheyne et al.,

2006). When the exact values of the inputs are fixed, but unknown, guesses

of their values (i.e. global estimates or local predictions) and associated

properties (i.e. distributions, moments, and correlations) can be obtained by

both design-based estimates or model-based predictions (Gregoire, 1998).

Design-based estimators are well established and many studies examine

the influence of plot size (Gambill et al., 1985), plot spacing (Chapman,

1982), and plot density (Lohr, 1999) on sampling costs (Mawson and Mack,

1982) for simple and complex (Oderwald and Jones, 1992; Mandallaz and Ye,

1999) sampling schemes (de Gruijter et al., 2006). These studies are often

used to justify a particular sample intensity to minimize costs for a pre-

specified level of precision (i.e. confidence interval half-width). In contrast,

model-based prediction methods, such as geostatistics (Goovaerts, 1997) have
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been used to examine structural relationships (e.g. spatial correlation) among

tree size (Samra et al., 1989), volume (Holmgren and Thuresson, 1997), site

index (Hock et al., 1993), cork production (Montes et al., 2005), and value

(King, 2000).

While design-based methods are considered standard in many forest in-

ventory texts (Avery and Burkhart, 2003; Husch et al., 2003), model-based

methods can be more effective at describing phenomenon at operational scales

as they 1) can be used to obtain values for an arbitrary datum support (i.e.

point, block, or volume), 2) allow for the inclusion of some measure of dis-

similarity versus proximity among sample locations (i.e. spatial correlation),

3) facilitate cross-validation to assess model assumptions, and 4) can directly

incorporate measurement error directly into the prediction process (Wacker-

nagel, 1998). One particularly useful feature of model-based inference, which

addresses a key notion in forest operations that phenomenon (i.e. product

abundance, costs, productivity rates), located more closely in space, or time,

are more related than more distant phenomenon (Karlsson et al., 2003; Wein-

traub and Murray, 2006; Montes et al., 2005; Dimov et al., 2005) and that

these relationships can be used to enhance the decision making process in

the primary forest products supply chain (Hamann and Boston, 2007).

To examine the influence of spatial structure on precision production

planning, we examine the influence of spatial correlation on estimations (i.e.

design-based) and predictions (i.e. model-based) of the total volume in a

finite operational area. We use definitions that are consistent with classical

design-based sampling texts (Cochran, 1977) and model-based geostatistics

texts (Wackernagel, 1998). In Section 3.3, we present the formulations for

design-based estimation (Section 3.3.1) and model-based predictions (Section

3.3.2). Section 3.4 presents a description of the population and the simulation
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process used to examine various sampling schemes as defined by de Gruijter

et al. (2006). Section 3.5 presents the results and a discussion of our findings,

followed by our conclusions in Section 3.6.

Nomenclature

Harvest Unit Attributes
A A harvest unit, stand, or general operational polygon
λ(A) A function that returns the surface area of a polygon A
N The number of stems in A
M The number of sampling locations in A
VA The total volume in A
VA Intrinsic regionalized variable over A with point support

Tree Attributes
T Set of N stems in A that define the population and

universe of inference
Tk Stem k in a population of N stems
T u

k Position of Tk u ∈ R2

T d
k Outside bark stem diameter at 1.3 m for Tk (i.e. DBH), in mm
T h

k Total height for Tk, in m
T v

k Total volume for Tk (T v
k = f(Tk)), in m3

T p
k The detection polygon for Tk

T πj

k The inclusion probability for Tk as a function of pj( · )
U The set of unique labels for each T
Plot Attributes
P Set of M sampling locations in A
P` Plot ` in a sample of M locations
Pu Position of P` u ∈ R2

Pv
` A realization of a regionalized random process V ,

for the total volume of plot P`

W The set of unique labels for each P
Estimator Formulation

V̂ i,m,p
A The estimator for VA

i Design-based or model-based inference
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method index (i ∈ {HT,OK})
m Spatial correlation model (m ∈ {∅, L, S, E}, ∅ = none)
p Sampling pattern index p ∈ {RND,REG,NON,HEX}
Ik,`(D, θ1, θ2) An N ×M indicator vector or matrix for sample

inclusion of Tk at sample location P`

p( · ) A sample design function that assigns a probability
of inclusion, π, to each element of T

D Minimum T d to be included in fixed area plot or
variable radius plot

θ1 Fixed area plot radius when T d ≤ D
θ2 Angle gauge constant for variable radius plots when T d > D
dk,` N ×M distance matrix from Tk to P`

h Lag or distance between Pu
i and Pu

j

Operators and Miscellaneous Notation
0 A vector of zeros
N,R,C The set of natural, real, and complex numbers
∀,∃,@,∈, /∈⊂ for all, exists, not exists, in, not in, and subset
∨,∧,¬ logical OR, AND, and NEGATION operators
E[ · ],V[ · ],C[ · ]Expected value, variance, and covariance operator
C

′
, c

′
transpose of matrix C or vector c

C−1 Inverse of C
α Coordinates for a location (α1, α2) ∈ A

3.3 METHODS

LetA ⊂ R2, represent an operational harvest polygon with a finite bound-

ary, where the surface area, measured in hectares, is λ(A). The polygon A
contains a finite population of N stems denoted by the set T . Each stem Tk

is defined by a unique label and U = {1, . . . , k, . . . , N} is the set of labels that

is used to uniquely identify each stem. The attributes for each stem includes

a position T u
k ∈ R2, a diameter T d

k , and volume T v
k and are assumed to be
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known or measured without error. To reduce the notation, we shall write

T ∩ A to represent all stems within the boundary of A.

Let P represent a set of M measurement locations placed within A, where

each measurement location (i.e. point/plot) P` is defined by a unique label

and W = {1, . . . , `, . . . ,M} is the set of labels that are used to uniquely

identify each sampling location. For this examination, each sampling location

contains a position vector Pu
` ∈ R2 and a volume density observation Pv

` (i.e.

m3 ha−1) that are measured without error. Again, to reduce the notation,

we shall write ` ∈ W or A`∈W to represent all sampling locations in A.

The target parameter, which here is the fixed, but unknown total volume

in A, denoted by VA, expressed as the function of interest as:

VA = f(T v
1 , . . . , T v

k , . . . , T v
N) =

∑
k∈U

T v
k (3.1)

with the spatial mean over A, denoted by V A, defined as:

V A = λ(A)−1f(T v
1 , . . . , T v

k , . . . , T v
N) = λ(A)−1

∑
k∈U

T v
k (3.2)

with the variance of the total volume expressed as:

σ2
VA

=
1

N

∑
k∈U

(T v
k − V A)2 =

1

2N2

∑
k∈U

∑
`∈U

(T v
k − T v

` )2 (3.3)

The sampling unit is the individual stem Tk. All sample units that are

observed, taken collectively, are referred to as a sample (Tillé, 2006). A

function p( · ), commonly referred to as a sample design or plot design in forest

sampling, assigns an inclusion probability to each stem Tk for each unique

combination of T and p( · ) (de Gruijter et al., 2006; Tillé, 2006). Common

definitions of p( · ) include ”split-plot designs” (i.e. p( · ) = f(D, θ1, θ2)) where

T is stratified into two populations based on some diameter D, so that when
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T d
k ≤ D, stems are included on a fixed-area plot, and when T d

k > D, stems

are included on a variable-radius or ”prism” plot, where θ1 defines the fixed-

area plot radius, and θ2 is an angle gauge constant, or basal area factor, that

defines the radius of the circular inclusion probability polygon associated

with stem Tk, when T d
k ≥ D.

Our goal is to obtain the best guess of VA and our scope of inference, and

thus our understanding of the current conditions in A, for a single sample in

time, is a function of the unique combination of T , P , and p( · ) (Gregoire,

1998; Knottnerus, 2003; Tillé, 2006). In the next two sections, we present

two methods to obtain a guess of VA, which will then be used as an input for

a precision supply chain decision support framework (Riopel et al., 2005).

The first method of guessing is the classic design-based estimator (i.e.

estimation) of the population total, presented by Horvitz and Thompson

(1952), denoted V HT
A , and is most commonly used to make inference, not

about a particular stand, but about a larger population of similar polygons

(Gregoire, 1998). The second method of guessing the total volume in A is a

model-based inference method which can be used to obtain predictions for

various datum support levels (i.e. point, block, and volume datum), is the

classic geostatistical predictor known as Kriging, denoted V OK
A . The method

is not used to make inference about a larger population of similar polygons

as is the case in estimation, but to make predictions for a specific population

(i.e. T ∩ A) (Mandallaz, 2000).

Since we wish to examine the influence of these two inference types (i.e.

traditional sampling, or estimation (V HT
A ) versus model-based sampling (i.e.

spatial sampling, or prediction (V OK
A )) within a precision supply chain frame-

work, specifically the communication and information network (Riopel et al.,

2005), our interest is specifically on the performance (i.e. bias and variance)
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of the two methods of inference, and so we compare the two, examine their

applicability to predict volume density within A to refine our guess, over A,

to enhance the input data for complex decision making.

3.3.1 Design-Based Estimation

A sample can be represented by the column vector s = (s1, . . . , sk, . . . , sN)′ ∈
{0, 1}N ∀ k ∈ U , where sk = 1 if stem k is in the sample, and sk = 0 if it is

not (Knottnerus, 2003). An empty sample is denoted by s = (0, . . . , 0, . . . , 0)′

and a census is defined by s = (1, . . . , 1, . . . , 1)′ (Tillé, 2006).

The well known unbiased minimum variance estimator for Equation (3.1),

developed by Horvitz and Thompson (1952), is:

V̂ HT
A ≡

n∑
i=1

T v
i

πi

≡
N∑

j=1

T v
j sj

πj

(3.4)

where n is the sample size, which for now will considered fixed, but need not

be (Gregoire, 1998; Mandallaz and Ye, 1999; Tillé, 2006), and π is the vector

of N inclusion probabilities, defined below.

The associated variance of its sampling error is expressed as:

V arHT [V̂ HT
A ] =

N∑
i=1

N∑
j=1

(
πij − πiπj

)T v
i T v

j

πiπj

(3.5)

which can be estimated by (Knottnerus, 2003):

V̂ arHT [V̂ HT
A ] =

N∑
i=1

N∑
j=1

sisj

(
1− πiπj

πij

)T v
i

πi

T v
j

πj

(3.6)

where πi, πj, and πij are the first and second-order inclusion probabilities

for stem i and j and πij ≥ 0. It should be noted that when T α
k ∝ πk ∀k ∈
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U , where α is some variable measured on stem Tk, then V ar[V̂ HT
A ] = 0

(Knottnerus, 2003; Tillé, 2006).

The first-order probability of inclusion, is expressed as:

πk =
λ(A ∩ T p

k )

λ(A)
∀k ∈ U (3.7)

and is normally defined in an operational environment by the intersection of

T p
k , the non-edge corrected inclusion polygon, commonly defined as a circle

of fixed radius. To correct for edge-bias, the first-order inclusion probability

polygon is defined as the intersection of T p
k and the boundary ofA (Mandallaz

and Ye, 1999). Here, we assume a sample can include a single sample location

(i.e. M = 1), and so the second order inclusion probabilities are equal to

zero (Gregoire, 1998).

At each sampling location Pu
` , stems are selected into P`, by the following

indicator function:

Ik,`(D, θ1, θ2) =


1 T d

k ≤ D ∧ dk,l ≤ θ1

1 T d
k > D ∧ dk,l ≤ F (θ2)

0; otherwise

(3.8)

where D is the breast height (1.3 m) diameter for Tk to be included on either

a fixed radius plot of radius θ1, or a variable radius plot with a limiting

distance, expressed as a function of θ2 for Tk and p( · ) alone (i.e. F (θ2) =

2500 · 2 sin θ2/2 (Husch et al., 2003)). When M = 1, the result is a N binary

vector s and when M > 1, the result is an N ×M indicator matrix S.

Now, let the probability of inclusion be pk = P (Ik,`(D, θ1, θ2) = 1), which

coincides with πk when M = 1, a single plot (Gregoire, 1998). Since πk is a

function of Tk and p( · ) alone, and not the location of plot P`, the position of

P` has no effect on πk ∀ k ∈ U when Tk is close to the edge of A (Gregoire,

1998; Mandallaz, 2000; Mandallaz and Ye, 1999).
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The design-based estimator for VA, presented by Horvitz and Thompson

(1952), can now be expressed as:

V̂ HT
` =

∑
k∈U

T v
k

pk

Ik,`(D, θ1, θ2) ∀ ` ∈ W (3.9)

As noted by Gregoire (1998), using V̂ HT
` to estimate the total volume in

A at each P`, yields M independent estimates of V HT
A , which can then be

used to estimate the total volume in A:

V̂ HT
A = M−1

M∑
`=1

V̂ HT
` (3.10)

Since the V̂ HT
` are considered independent and identically distributed

(i.e. no correlation among attributes at different sampling locations), the

estimated variance for the estimated total volume, over A, can be expressed

as (Gregoire, 1998):

V ar[V̂ HT
A ] = M−1V ar[V̂ HT

` ] ∀` ∈ 1, . . . ,M (3.11)

The estimator developed by Horvitz and Thompson (1952), considered

the ”gold-standard” estimator, is a linear combination of the data elements

(i.e. T ,P , and p( · )), weighted by the inverse of their inclusion probabilities,

is standard in forest sampling theory (Gregoire, 1998; Mandallaz and Ye,

1999; Cooper, 2006). The estimator can be used to examine any number of

equal and unequal design-based probability sampling design functions p( · ),

and thus entire sampling schemes (e.g. (de Gruijter et al., 2006, see)) for

sampling with or without replacement using algorithms that rely on post-

sample permutations (Knottnerus, 2003) or super-population models (Tillé,

2006).
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While the estimator developed by Horvitz and Thompson (1952) is not

without caveats (Knottnerus, 2003; Tillé, 2006), we now present a geosta-

tistical method to predict VA from P assuming some correlation structure

among P , within A, assuming T is the result of a complex random process

(Gregoire, 1998).

3.3.2 Model-Based Prediction

Now, let V (α) be a regionalized variable or function defined by a random

process on the domain A, for point sample support, where V (α) produces

a density (i.e. m3 ha−1) at some point location α ∈ A (Armstrong, 1998;

Wackernagel, 1998; de Gruijter et al., 2006).

Given that π is a function of T and p( · ) only, the local density is equal

to the true density, V (α), by construction:

VA
Horvitz and Thompson (1952)

=
∑
k∈U

T v
k sk

πk

Mandallaz and Ye (1999)
=

∫
A
V (α) dα = V A ·λ(A)

(3.12)

where the local density of V (α) at any location α, is also the estimator

developed by Horvitz and Thompson (1952) and V A is the spatial mean

or density (i.e. m3 ha−1) of VA over A. This construction translates the

problem of estimating VA from the finite population T , as is common in

forest sampling, to estimating integrals of V (α) over spatial domains of A
(i.e. stands, treatment polygons, harvest areas), which are commonly used

for inputs into forest planning models (Weintraub and Murray, 2006), which

can be done using model-based prediction methods such as mixed-effects

models (Robinson and Wykoff, 2004) or geostatistics (Mandallaz and Ye,
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1999; Mandallaz, 2000).

Geostatistics commonly uses measures that relate proximity and similar-

ity (Wackernagel, 1998). One such measure is one half the square of the

difference between two values, expressed as:

γ(i, j) =
(Pv

i − Pv
j )2

2
(3.13)

where Pv
i ,Pv

j ; i, j ∈ W are realizations of V (α) at P u
i and Pu

j which, for all

pairs of data in a sample, when plotted, forms a cloud of points known as a

variogram (Isaaks and Srivastava, 1989; Wackernagel, 1998).

For large datasets, the variogram cloud can be non-informative and so,

curve fitting techniques are used to fit the data to an experimental variogram:

γ(hk) =
1

2 ·nc

nc∑
i=1

(P v
α+h − P v

α)2 ∀ h ∈ hk (3.14)

where P v
α are realizations of V (α) at location Pα, k is the distance that can

be associated with one of the distance classes, h, and hk is a k vector of

distance classes whose orientation is the same up to a given tolerance angle

(Wackernagel, 1998).

Since it may not be possible to obtain sufficiently large samples to obtain

adequate fits for Equation (3.14), theoretical variograms (Wackernagel, 1998),

defined as:

γ(h) =
1

2
E[(V (α + h)− V (α))2] (3.15)

which require that the expectations of the first two moments (i.e. mean and

covariance), expressed as:
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E[V (α + h)− V (α)] = 0, (3.16)

V[V (α + h)− V (α)] = 2γ(h) (3.17)

are invariant to translation which assumes that the mean of the h, or the

drift, is supposed to be zero, and invariant for any translation in A, and that

the variance has a finite value, depending on the length and orientation, but

not the position of h within A (Cressie, 1985; Dimov et al., 2005).

A variety of theoretical variogram models can be fit using the classical

estimator, described by Cressie (1993b):

γ̂(h) =
1

2 ·Nh

Nh∑
i=1

(V (Pu+h)− V (P u))2 h = h(1), h(2), . . . (3.18)

where V (Pu+h) = Pv at Pu+h, V (P u) = Pv at Pu, h = Pu
j −Pu

i , and Nh is

the number of lag differences defined by distance classes (Wackernagel, 1998).

Using this general relationship, geostatistical methods can predict values of

V (α) at an unsampled location α ∈ A as well as provide an estimate of the

uncertainty of the prediction at location α.

One such geostatistical prediction method, known as ordinary kriging

(Isaaks and Srivastava, 1989), uses fitted theoretical variogram models is like

the estimator developed by Horvitz and Thompson (1952), which is also is a

linear combination, or weighted average of the data P , and be used to predict

the realization of the volume density (i.e. m3 ha−1), at some unsampled

location Pα.

The prediction for the realization of V (α) at location α, can be expressed
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as:

P v̂
α =

M∑
`=1

ω`V (Pu
` ) (3.19)

where P v̂
α is the predicted response of V (α), at some unsampled location Pα,

from the weights ω` and the M plots, or realizations of V (α), Pv
` within A,

from the sample locations Pu
` .

Ordinary kriging, like many statistical problems (e.g. ordinary least

squares), is a constrained multi-criteria minimization problem (Gentle et al.,

1997) that produces a predictor that is unbiased (E[V̂A − VA] = 0) and the

error or prediction variance (V ar[V̂A − VA]) is minimum (Armstrong, 1998).

The system of ordinary kriging equations can be expressed compactly

using matrix notion:
Ĉ1,1 . . . Ĉ1,` 1

...
. . .

...
...

Ĉ`,1 . . . Ĉ`,` 1
1 . . . 1 0



ω1
...
ω`

λ

 =


Ĉ1,α

...

Ĉ`,α

1

 (3.20)

or more simply:

Cω = D (3.21)

where ω is a vector of the kriging weights and the Lagrangian multiplier, λ,

which converts the constrained minimization problem into an unconstrained

minimization problem (Bishop, 2006), C is the covariance matrix of the ob-

servations, from the relationship γ(h) = C(0) −C(h) (Wackernagel, 1998),

and D is the vector of the covariances at the points themselves, that is,

γ(h) = 0 (Isaaks and Srivastava, 1989).
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The resulting system of M + 1 equations can be easily solved for C−1

(Press et al., 2007), resulting in the kriging weights ω:

ω = C−1D (3.22)

where the resulting values for ω produce the unbiased estimates with the

minimum prediction variance, provided the candidate model C is consistent

with a positive definite covariance matrix (C ≡ x′Ax > 0;A,x ∈ Cn) (Isaaks

and Srivastava, 1989; de Gruijter et al., 2006).

The predicted volume density (i.e. m3 ha−1) at some unsampled location,

P v̂
α, can then be calculated by:

P v̂
α =

M∑
`=1

ωiP
v
` (3.23)

with the associated minimized residual prediction variance, expressed as:

σ̂2
r = σ̂2 −

M∑
`=1

ω`C`,α + λ (3.24)

where σ̂2 is the ”sill” or covariance value for |h| = 0 and λ is a Lagrangian

parameter.

To obtain V̂A and the associated V̂ ar[V̂A], a grid of prediction locations

representing possible supply locations (i.e. stem locations, turn locations, or

landing locations), are placed within A and the predicted local volume den-

sity, and the associated prediction variance, are computed for each location

and then combined to obtain V̂A and V̂ ar[V̂A] using block kriging equations

(Journel and Huijbregts, 1978; Kim and Baafi, 1984).

As is the case with the estimator developed by Horvitz and Thompson

(1952), model-based prediction is also not without its caveats (Isaaks and

Srivastava, 1989; Gregoire, 1998; Mandallaz, 2000). For now however, we
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assume V (α) is well defined and there are an infinite number of possible

sample and prediction locations inA (i.e. α ∈ R2) that follow the relationship

presented in Equation (3.12).

3.4 DATA AND SIMULATIONS

To compare these two methods for guessing VA, a bounded 8.24 ha polygon,

denoted A, was located on the Oregon State University McDonald-Dunn Re-

search Forest (Figure 3.1). The boundary for A and the stem positions,

T u ∀ k ∈ U , for all stems over 15 cm, were recorded using standard survey

methods (Davis et al., 1981). Attributes collected for each Tk included the

species, T s
k , the diameter at breast height T d

k , the total height, T h
k , the height

to live crown T c
k , the number of pieces in the main stem, T n

k , and surface

characteristics for each piece T q
k ∀ q ∈ (1, · · · , T n

k ). We assume measurement

error is non-existent.

A script was created to determine the volume for each stem, T v
k , where

all stems were merchandised into log lengths of 4 m, to a 2 cm top, using the

taper equation presented by Kozak et al. (1968). If the stem could not be

cut into a round number of standard log lengths, any remaining stem length

was bucked into a short log no less than 2 m. Stems were merchandised with

a stump height of 0.3 m and each log included 0.2 m of trim. For each log

in the stem, the starting and ending height of the log, the nominal length

and the actual length (nominal length plus trim), the small and large end

diameters, and the Smalian volume was recorded. For this examination, the

Smalian volume from each of the logs were then tallied and assigned to T v
k .

Only Douglas-fir (psudeotsuga mensezii (Mirb. Franco)) stems were used

resulting in a final count of 2053 stems with a spatial mean density V A of
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249.17 stems ha−1. The total volume for the study area VA, was 7560.07

m3 yielding an average stem volume of 3.68 m3 and an mean volume density

of 917.57 m3 ha−1.

TheN vector of first-order inclusion probabilities, π, were computed using

the ”tree-concentric method” (Schreuder et al., 1993) for a single sample

design, p(60, 10, 10). This design means that a ”plot design” is placed at the

sample location so that stems less than 60 cm are included in a fixed-area

plot, with a radius of 10 m and stems over 60 cm are sampled using a basal

area factor equal to 10 m2ha−1(i.e. θ2 = 0.030303◦ (Husch et al., 2003)). To

correct for edge-bias, the polygon defining the probability of detection for

Tk, T p
k , was intersected with the edge of A, as described by Beers (1966), to

obtain the edge-corrected weights for the observations.

Once the sample locations were established, stems were selected for inclu-

sion into the sample using Equation (3.8), and both the corrected and uncor-

rected expansion factors (i.e. 1/π) were recorded and the results archived.

The theoretical spatial correlation models were defined by either a one-

parameter isotropic linear model (LIN):

γ(h) =

{
h
a

0 ≤ h ≤ a

1 h > a
(3.25)

a one parameter isotropic spherical (SPH) variogram model:

γ(h) =

{
3
2
|h|
a
− 1

2
|h|3
a

|h| < a

0 |h| ≥ a
(3.26)

or an isotropic one-parameter exponential (EXP) variogram model:

γ(h) = 1− exp
(−|h|

a

)
(3.27)

where γ(h) = C(0)−C(h) (Goovaerts, 1997), and a represents an unknown,
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Figure. 3.1: Plots of T u
k∈U and the plot densities for 1 replication of sample lo-

cations for random (RND), systematic (REG), non-aligned sys-
tematic (NON), and hexagonal systematic (HEX) samples from
A.
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but fixed population parameter specific to each model (Cressie, 1993a). For

simplification, we did not record the fit statistics for the estimated variogram

parameters.

These particular models were used as they represent a cross-section of

the possible peculiarities encountered when fitting variogram models such as

might arise in a production sampling environment (i.e. exponential is non-

linear in the parameters but differentiable everywhere, the spherical is non-

linear and non-differentiable for some parameters, and the linear increases

without bound, and so no covariogram exists) (Cressie, 1985).

For each replication, the theoretical variogram models were fit with a

lag distance class width of 100 m from zero to 800 m and the range was

fixed at 800 m as it was assumed that there would be no correlation among

plot volumes past 800 m and to ensure the fitting algorithm converged. As

suggested by Cressie (1993a), the variogram models were fit using weighted

least squares where the weights for the observations were
Nj

h2
j

(Pebesma, 2004).

For the model-based predictions, a 12 m×20 m grid of prediction locations

(i.e. possible production locations), was used to compute V OK,m,p
A . The

average value of V OK,m,p
A , denoted V

OK,m,p

A , was obtained using block-kriging

(Goovaerts, 1997), by averaging the variogram from each sample location

in A to estimate the coefficients of a point-to-block ordinary kriging system

(Montes et al., 2005). Once the value of V
OK,m,p

A was obtained, V̂ OK,m,p
A

was computed as the product of λ(A) ·V OK,m,p

A . The resulting block-kriging

prediction variance was then also used to compute the standard error of the

predicted total as

√
λ(A)2 · V̂ ar[V̂ OK,m,p

A ].

We generated 1000 samples and computed V̂ i,m,p
A , the bias (βi,m,p =

V̂ i,m,p
A − VA), the standard error (

√
V̂ ar[V̂ i,m,p

A ]), the mean squared error

(MSEi,m,p =
P

β2

n
), and root mean squared error (RMSEi,m,p =

√
MSEi,m,p)
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where n is the number of observations in each combination of sample pat-

tern, for each combination of i ∈ {HT,OK}, m ∈ {∅, LIN, SPH,EXP},
and p ∈ {RND,REG,NON,HEX} for n ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50}
sample locations within A (see Figure 3.1).

All calculations were performed using R (Ihaka and Gentleman, 1996)

with the sample locations obtained using the spsample function in the sp

package (Pebesma and Bivand, 2005), and the variogram estimation and

kriging prediction functions in the gstat package (Pebesma, 2004). Finally,

box-and-whisker plots of the bias and standard errors were generated using

the lattice package (Sarkar, 2008).

3.5 RESULTS AND DISCUSSION

To examine the results, we first visually inspected box-and-whisker plots

of the bias and standard error, for V̂ i,m,p
A , and then plotted RMSE. Figures

3.2 and 3.3 display the results of the simulations where the design-based esti-

mator V̂ HT,∅,p
A is displayed in the first column and the V̂ OK,EXP,p

A , V̂ OK,SPH,p
A ,

and V̂ OK,LIN,p
A model-based predictions are displayed in the second, third

and fourth columns, respectively. The rows correspond to the sample loca-

tion placement patterns for the random, hexagonal, non-aligned grid, and

the regularly spaced grid patterns, respectively.

For many of the replications, the actual number of plots installed in A
did not match the target sample size as a result of the randomization process,

and so the number of samples in each target sample size class is different.

This produced plots with a large number samples that deviated slightly from

the target sample sizes. For brevity, phenomenon where the target sample

size matched the actual sample size will be discussed. It should be noted the
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pattern did not change with the removal of these data, or if the corrected

and uncorrected inclusion probabilities were segregated, and so here, the

discussion is limited to visual inspection of the patterns, regardless of edge-

correction. Discussion of edge-correction is presented in Section 3.5.3.

3.5.1 Design-Based Estimates

Distributions of V̂ i,m,p
A and SE[V̂ i,m,p

A ] for the design-based estimates were

consistent with asymptotic theory for increasing sample sizes in that the

range in variation for the estimates decreased with increasing sample size

as is evident in the first column in Figures 3.2 and 3.3. The randomly

located design-based estimator bias distribution was wider than the non-

aligned and regularly spaced estimates. Both the non-aligned and regularly

spaced sample locations yielded a slight negative bias in the largest sample

sizes. The hexagonal sample pattern, yielded consistent distributions over

the limited range of obtained sample sizes, but did not decline as sample

size increased. The performance of the non-aligned seemed superior as there

were fewer ”bumps” between the edge-corrected and non-corrected results

and clearly fewer deviations from a smooth curve than the hexagonal and

regularly spaced sample locations (e.g. current practice).

3.5.2 Model-Based Predictions

Distributions of V̂ i,m,p
A and SE[V̂ i,m,p

A ] for the model-based estimates were

also consistent with asymptotic theory for increasing sample sizes in that the

range in variation for the estimates decreased with increasing sample size as
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is evident in the second through fourth columns in Figures 3.2 and 3.3.

Interestingly, there were larger deviations in the distribution of the bias

for the linear variogram model for the hexagonal, non-aligned, or regular

sampling patterns. The results are clearly visible around 25 and 30 sample

locations and again between 45 and 50 sample locations. This pattern is not

present in the other (i.e. exponential and spherical) variogram models.

The computed standard errors for model-based predictions, at each sam-

ple size, was notably smaller than the standard errors of design-based esti-

mates for all but the completely random sampling patterns. This supports

the notion that with the inclusion of a simple one-parameter linear, expo-

nential, or spherical variogram model, the size of the standard error can be

considerably less than the traditional design-based estimator. By examina-

tion of Figures 3.2 and 3.3, the practitioner can ascertain that the number of

plots needed to achieve the same results is considerably less than the number

of plots required for design-based sampling.

3.5.3 Mean Square Error

To more thoroughly examine the performance of each method, we plot-

ted the RMSE V̂ i,m,p
A , for both the edge-corrected (solid line) and uncorrected

(dashed-line) results (Figure 3.4). The patterns in the RMSE for both were

similar; the non edge-corrected results showing worse (i.e. higher RMSE)

values than the edge-correct results, regardless of the assumed spatial corre-

lation model and sampling pattern.

The pattern for the design-based results are commensurate with sample

theory in that for the randomly located sample types, the RMSE decreases as

the sample size increases for all four sample location patterns. The patterns
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in the uncorrected results are more pronounced in that the smoothness of

the curve is less for non-random sample location patterns.

Interestingly, the pattern between design and model-based inference is

similar regardless of the variogram model in that the bias is negligible across

the range of the target sample sizes. While the large deviations in the linear

variogram model-based inference, the pattern is prevalent across all sam-

ple location patterns, with the exception of the randomly placed samples.

In short, performance of the non-edge corrected RMSE roughly the same

between design-based and model-based methods, with edge-corrected model-

based predictors notably superior to the design-based estimator.

3.6 CONCLUSIONS

For this study, we simulated operational field sampling and examined

the consequences of using classical design-based estimations and model-based

predictions, for a variety of sample patterns, sampling intensities, and spatial

models, in order to guess the total volume in bounded area A, as is often

the case with pre-harvest survey samples. Here, the only knowledge available

to the sampler was the boundary of A itself, and so we tested the effects of

sampling using various assumptions of the spatial correlation structure, as

would be the case in operational sampling environments.

While the general accuracy of model-based predictions depends on a num-

ber factors such as 1) the number of sample locations, 2) the quality of the

data at each sample location, 3) the positions of the samples within A, 4) the

distances between the sample locations and the position of interest, and 5) the

spatial continuity of the target parameter, we used a naive approach (e.g. no

a priori information, no transformations, no covariates, no multi-stage sam-
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ple schemes, and non-informative sampling) and found that the model-based

predictions were superior, to the design-based estimates for operational en-

vironments. The technique provides a method to predict the volume density

at unsampled locations within A, without having to make inference about a

larger population with similar characteristics, which is typically the goal in

forest operations.

From our results, sampling densities, and thus the positions of sample

locations, can be critical in obtaining predictions for operational situations

as was apparent in the larger sample sizes for the linear variogram model

(i.e. larger biases and RMSE values), and should model-based predictions

be used for precision production planning, maintaining sufficient diversity

among the distances between sample locations is key to obtaining estimates

of the variogram model used for prediction, regardless of the model selected

(i.e. linear, spherical, or exponential). In short, non-aligned and regular

sampling patterns, provided the best benefits (anti-conservative confidence

intervals and better sample size flexibility) regardless of inference method or

variogram model.

Finally, additional information can be incorporated into the sampling pro-

cess, more sophisticated variogram models can be examined, covariates can

be included, and the trade-offs between sample precision, sample informa-

tion content, and sampling costs can be explored, thus generating further

enhancements to the sampling and prediction process, the outputs of which

are ultimately used to in operational, tactical, and strategic planning and

optimization models.
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4. OPTIMAL SPATIAL SAMPLING TO MAXIMIZE SAMPLE

INFORMATION CONTENT FOR USE IN FOREST SUPPLY CHAIN

PLANNING AND OPTIMIZATION

4.1 ABSTRACT

We determined the Pareto frontier between the information content and

the sampling cost by combining the constrained maximum entropy sam-

pling problem (CMESP) Lee (1998) with the classic traveling salesman prob-

lem (Lawler et al., 1985) for a discrete random spatial field. To solve the

bi-objective problem (i.e. maximize sample information content, minimize

sample cost) we used a multi-objective evolutionary algorithm, presented by

Knowles and Corne (1999), to solve the general d-objective non-linear mixed

integer problem.

Our results obtain the set of best possible trade-off curves (i.e. Pareto

frontier) for a population of 36 general ”split-plot” sample designs that strat-

ifies a finite population of stems, using a critical diameter, to be selected

into a fixed-area plot and a variable radius plot. Our results agree somewhat

with those of Zeide (1980), in that larger plots farther apart yield higher

information/cost ratios than do smaller, more densely spaced plots.

The resulting Pareto curves, which are equivalent to the Dn-optimal ex-

perimental design problem for a finite cost, can then be used to examine a

variety of questions (i.e. experiments) about the population of stems, design-

based inference, model-based inference, simulation, and optimization prob-

lems within a multi-criteria/multi-objective decision making framework so

that the uncertainty associated with the unsampled locations is minimized.
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4.2 INTRODUCTION

In forest operations, which typically focuses on small spatial and tem-

poral scales (e.g. time-motion studies, daily/weekly crew-assignments, tac-

tical, and operational planning), many well established studies examine the

trade-off between sampling costs and plot size (Zeide, 1980), basal area fac-

tor (BAF) (Gambill et al., 1985), plot density (Chapman, 1982) for simple

and complex (Oderwald and Jones, 1992; Mandallaz and Ye, 1999) sam-

pling schemes (de Gruijter et al., 2006) for both design-based estimation

and model-based prediction where the goal is to guess a target parameter

(i.e. total volume) within a finite region (i.e. harvest or treatment polygon)

(Gregoire, 1998).

Conversely, in the environmental and hydrological monitoring literature,

where the focus is to minimize data acquisition costs at larger scales (e.g.

geographic regions, watersheds, or basins), emphasis is often placed on in-

stalling (Bueso et al., 1998), expanding (Le et al., 1993), or contracting (Wu

and Zidek, 1992) networks of monitoring stations (i.e. populations of sam-

pling locations), for single and multiple objectives (Trujillo-Ventura and El-

lis, 1991), often assuming spatial correlation information (Shewry and Wynn,

1987), where the goal is to maintain or maximize the information content (i.e.

entropy) from the selected sample locations, as the cost of traveling to, in-

stalling, maintaining, and collecting data at monitoring stations is minimized

(Caselton and Hussain, 1980; Lee, 1998).

Entropy, a measure of the uncertainty contained in the variables (Le and

Zidek, 2006), is a general approach to sampling which is based on information

theory (Shannon, 1948). The measure, originally formalized in statistical me-

chanics by Boltzmann, and made popular in statistics by Blackwell (1951),
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has been applied to a wide variety of disciplines including computational

biology (Abbas and Holmes, 2004), data mining (Kononenko and Kukar,

2007), econometrics (Theil, 1971), experimental design (Lee, 1998), hydro-

logical monitoring networks (Caselton and Hussain, 1980), machine learning

(Mansour and Schain, 1997), probability sampling (Chen et al., 1994), sam-

pling for single (Bueso et al., 1998) and multiple (Bueso et al., 1999) variables

and observations, species diversity assessment (Gill and Joanes, 1979), and

convergence criteria for single and multiple objective optimization (Farhang-

Mehr and Azarm, 2002).

We use entropy for the following reason: In the collection of forest sam-

ples, in which the configuration of the sample location network and data

observed can be considered part of the supply chain ”information and com-

munications channel” (Caselton and Hussain, 1980), there are often multiple,

yet implicit, purposes for collection of field samples were the optimization for

one objective may be suboptimal for another (Gentle et al., 1997). Often,

forest samples originally used for timber volume assessment (Zeide, 1980),

are then used for environmental monitoring (Le et al., 1993), or potentially

used for growth and yield modeling (Stage, 1973), or for the prediction of

ancillary and possibly spatially correlated variables to estimate product abun-

dance over a finite region (Montes et al., 2005). Here, we assume the original

purpose of the survey is to predict the total volume VA from a single observa-

tion (i.e. survey), and that additional information (e.g. correlation structure

or ancillary variables such as production estimates) will be used for other

purposes such as ecosystem assessment (Stevens, Jr., 1997), activity plan-

ning (Hamann and Boston, 2007), simulation (Davis et al., 2001), or for the

optimization of multiple outputs (Bettinger et al., 1999), as is often the case

in operational environments.



84

Rather than examine the curves between the between plot travel-time on

a rectangular lattice and the resulting probability sampling variance, as is

traditionally done in the forest sampling literature (Zeide, 1980; Chapman,

1982; Gambill et al., 1985), we directly examine the Pareto frontier between

the maximum average information content (i.e. entropy), for sampling to

obtain a guess of VA using probability sampling, at the minimum cost re-

quired to obtain the sample, for a general sample design, p( · ), as is common

in environmental sampling (i.e. Shewry and Wynn (1987)). While the pri-

mary objective to obtain the set of possible samples that are optimal for

predicting VA, regardless of our inference (i.e. design-based versus model-

based inference (Gregoire, 1998)), we also wish to use the resulting sample

to make predictions (i.e. inputs) for simulation, optimization, and we wish

to minimize our uncertainty associated with those results as well.

Assuming we have complete information about the formulation of the

optimization problem formulation (i.e. exactly known values for inputs and

exactly known values for outputs). This method facilitates the examination

of any number of potential models used to determine the status of A for a

variety of purposes. Our purpose is to obtain the samples that provide the

maximum information content, for the least cost, when the goal is both to

obtain precise samples, but also to formulate and solve non-linear constrained

possibly stochastic d-objective (d ≥1) minimization problems (Marti, 2005)

using the resulting estimates or predictions of the total volume in A, denoted

VA.

We explain our rational using definitions that are consistent with classi-

cal design-based sampling (Cochran, 1977; Tillé, 2006), information theory

(Shannon, 1948), combinatorial optimization (Lawler et al., 1985), and graph

theory (Diestel, 2005). In Section 4.3, we present the notation, the objec-
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tives, and the complete formulation. Section 4.5 presents a description of

the population of stems, sample locations (i.e. plots) and the population

of sample designs which are common in pre-harvest surveys. A description

of the heuristic used to determine the determine the Pareto frontier is then

presented in Section 4.4, followed by the results and a discussion in Section

4.6. Finally, we present our conclusions in Section 4.7.

4.3 PROBLEM FORMULATION

LetA ⊂ R2, represent an operational harvest polygon with a finite bound-

ary, where the surface area, measured in hectares, is denoted λ(A). The

polygon A contains a finite population of N stems denoted by the set T .

Each stem Tk is defined by a unique label and U = {1, . . . , k, . . . , N} is the

set of labels that is used to uniquely identify each stem. The attributes for

each stem includes a position T u
k ∈ R2, a diameter T d

k , and volume T v
k . To

reduce the notation, we shall write T ∈ A to represent all stems in A.

Let P represent a set of M potential measurement locations placed within

A, where each measurement location (i.e. point/plot) P` is defined by a

unique label and W = {1, . . . , `, . . . ,M} is the set of labels that are used to

uniquely identify each sampling location. For this examination, each sam-

pling location contains a fixed position vector Pu
` ∈ R2 and a volume density

observation Pv
` (i.e. m3 ha−1) that is measured without error. Again, to

reduce the notation, we shall write ` ∈ W or A`∈W to represent all sampling

locations in A.

The sampling unit is the sample location (i.e. plot) P`. All sample units

that are observed, taken collectively, are referred to as a sample, and the

sample size is defined as the number of sample locations visited during the
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survey. A general sample design function p( · ) (i.e. plot design), assigns an

inclusion probability to each stem Tk. The function p( · ) is typically used to

select elements of T into the sample, at sample location `, using an indicator

function (Gregoire, 1998; Mandallaz and Ye, 1999).

The decision variable, design space, or sample space, is represented by the

vector s = (s1, . . . , s`, . . . , sM) ∈ {0, 1}M ∀ ` ∈ M , where s` = 1 if sample

location ` is included in the sample, and s` = 0 if it is not (Knottnerus,

2003). An empty sample is denoted by s = (0, . . . , 0, . . . , 0) and a census

of all M possible sample locations is defined by s = (1, . . . , 1, . . . , 1) (Tillé,

2006). The total number of plots included in the sample (i.e. sample size) is∑M
`=1 s` = n, which is also known as a cardinality constraint (Ko et al., 1995;

Tillé, 2006). The cardinality of the sample space, S thus the total number

of possible samples, regardless of any cardinality constraints (i.e. sample size

constraints) can be expressed as 2M =
∑M

i=1

(
M
i

)
.

While the main goal is to obtain the Pareto frontiers for the maximum

information content versus cost, the initial purpose (i.e. first objective) of a

forest sample is often to obtain the best guess of the target parameter which,

in this case, is the fixed, but unknown total volume (i.e. m3) in A, denoted

by VA, expressed as the function of interest:

VA = f(T v
1 , . . . , T v

k , . . . , T v
N) =

∑
k∈U

T v
k (4.1)

with the spatial mean (i.e. m3ha−1) over A, denoted by V A, defined as:

V A = λ(A)−1f(T v
1 , . . . , T v

k , . . . , T v
N) = λ(A)−1

∑
k∈U

T v
k = λ(A)−1 ·VA (4.2)
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and the variance of the total volume expressed as:

σ2
VA

=
1

N

∑
k∈U

(T v
k − V A)2 =

1

2N2

∑
k∈U

∑
`∈U

(T v
k − T v

` )2 (4.3)

which can be estimated (i.e. V̂A and V̂ ar[V̂A]) by a set of n sample locations

placed within A (Gregoire, 1998; Mandallaz and Ye, 1999)).

The scope of inference, and thus the understanding of the current con-

ditions within A, for a single sample in time, is a function of the unique

combination of T , P , and p( · ) (i.e. triplet) (Knottnerus, 2003; Tillé, 2006;

Gregoire, 1998).

Ultimately, our goal is to determine which sample locations within A,

yield the highest average information content (i.e. the most valuable) using

the information content metric, entropy, for a given sampling cost, which

represents the willingness to pay for the information. In other words, before

we may harvest A using the optimal ”plan”, thus optimizing our production

objectives, we first need to optimize our harvest of the potential information

from A where our choices to detecting phenomenon within A are limited (i.e.

finite population of sample design functions, p( · )) as is the case in typical

operations where sampling budgets are often arbitrarily constrained based

on the perceived value of A by the decision maker.

4.3.1 First Objective: Constrained Maximum Entropy Sampling Problem

The maximum entropy sampling problem (MESP) (Ko et al., 1995), which

is also equivalent to the Dn-optimal experimental design problem (Boyd and

Vandenberghe, 2004), maximizes the average information content, or mini-

mizes the uncertainty of a discrete spatial random field VA. The problem is
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as follows: Given a set P of M sample locations, called the design space,

a set F ∈ P of f ”forced” sample locations, and a design size n, such that

f ≤ n ≤ m, the objective is to choose a set S of n sample locations satisfying

F ∈ S ∈ P , called the feasible sample, such that observations taken at these

sample locations will be as valuable as possible and minimize the uncertainty

associated with the unsampled locations (Ko et al., 1995). The constrained

maximum entropy sampling problem (CMESP), is similar to the MESP, with

K additional constraints (Lee, 1998):

s∗ = argmin
s∈S

{
−ln(det(C[s, s])) ∈ R

∣∣∣∑
j∈N

aijxj ≤ bi i ∈ K;
∑
j∈N

xj = n
}

(4.4)

where ln[ · ] is the natural logarithm, det[ · ] is the determinant operator,

C[s, s] is the principal sub-matrix of C[S] with row and column entries in-

dexed by s, n is the cardinality constraint (i.e. sample size), subject to the K

constraints, and the decision variable, s is represented by the column vector

s = (s1, . . . , sk, . . . , sM)′ ∈ {0, 1}M ∀ k ∈ U , where sk = 1 if sample location

k is included in the sample, and sk = 0 if it is not (Knottnerus, 2003). An

empty sample is denoted by s = (0, . . . , 0, . . . , 0)′ and a census is defined by

s = (1, . . . , 1, . . . , 1)′ (Tillé, 2006).

To determine the entropy for a particular sample s, from the M sample

locations, we implement the algorithm developed by Ko et al. (1995), where

the exact entropy associated with any n-element subset S of M (i.e. cardi-

nality constraint) is the logarithm of the determinant of the n× n principal

sub-matrix A[S] with row and column indices in S where s ∈ S. The matrix

A[S] defines the correlation structure, in this case C is the covariance matrix,

among the population of possible sample designs, as is similar to the method

described by Bueso et al. (1998), who also used entropy based optimal spatial
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sampling designs with a spatial correlation structure in order to determine

the optimal environmental monitoring network.

4.3.2 Second Objective: Traveling Salesman Problem

Assuming the sampler is free to move between any two of the given M

potential sample locations, the total cost to collect observations (i.e. tree

measurements) and move among the n selected sample locations, is equiv-

alent to the famous traveling salesman problem (TSP) (Lawler et al., 1985;

Michalewicz and Fogel, 2004). The TSP, which is equivalent to finding the

minimum length Hamiltonian cycle of a graph, G (Okabe et al., 2000), is

defined as follows: Given the M potential sample locations (i.e. cities or

vertices), a M × M distance matrix D = d(i, j), can be represented by a

complete weighted graph G = (M,E, c), where E represents the edges (i.e.

travel paths) connecting the M potential sample locations, and c is a func-

tion that assigns to each edge (i, j) ∈ E, a vector (c1i,j, . . . , c
K
i,j), where each

element cki,j corresponds to a vector of K costs between sample location i and

j (Paquete et al., 2004). The problem can be expressed mathematically as:

x∗ = argmin
x∈S

{∑
ij

cijxij ∈ R
∣∣∣xij ≥ 0;

∑
i

xij = 1 ∀ j,
∑

j

xij = 1 ∀ i
}

(4.5)

where cij is defined as the cost to move between sample location i and j,

represented by xij = 1 to move along that edge, otherwise xij = 0. Here, the

length of the cost vector for each edge, is one (i.e. K = 1), representing only

the cost of travel (i.e. distance) and since a sampler can move between any

two sample locations, G represents a Euclidean Distance Matrix (EDM ≡
D ∈ R2) with M(M − 1)/2 entries (Dattorro, 2005).
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Like the CMESP, the TSP is a well known and well studied NP − hard

problem, where the number of possible solutions representing all the tours, or

permutations, for each set of selected sample locations is n! (Ehrgott, 2000;

Yan et al., 2003). The TSP has been used to solve vehicle routing, computer

wiring, sheet cutting, job sequencing, and data clustering problems (Lawler

et al., 1985; Michalewicz and Fogel, 2004). Variations on the TSP have been

used to determine the minimum spanning tree (Weintraub and Navon, 1976),

the longest inter-node distance, routing problems with multiple vehicles, ve-

hicles with capacity constraints, and tours for deliveries with time-windows,

all of which are important in primary forest supply chains (Michalewicz and

Fogel, 2004).

4.3.3 Complete Formulation

The Pareto frontier between the maximum average information content

of the sample (CMESP) and the cost to sample A (TSP), can be deter-

mined by the minimization of a general non-linear constrained deterministic

d-objective problem (d ≥1), expressed using the general formulation (Karush,

1939; Kuhn and Tucker, 1951; Osyczka, 2002; Coello Coello, 2002):

x∗ = argmin
x∈S

{
f(x) ∈ Rd

∣∣∣g(x) ≥ 0,h(x) = 0
}

(4.6)

where the goal is to obtain the arguments x∗ that yield the minimum f , a

vector of d-objectives, subject to g, a vector of K inequality constraints, and

h, a vector of M equality constraints and the fitness of any candidate solution

x can be evaluated directly from the functions f , g, and h.

For problems with potentially competing and possibly non-commensurate
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objectives (i.e. d > 1), an objective vector fa is said to dominate another

objective vector fb, denoted by fa ≺ fb (component-wise), if and only if:

fa,i ≤ fb,i ∀ i ∈ {1, . . . , d} ∧ fa,j < fb,j ∃ j ∈ {1, . . . , d} (4.7)

In words, an objective vector is called non-dominated if there are no other

objective vectors that can increase the value of any one of the d objective

functions without decreasing the value of another of the d objective functions

(Tan et al., 2005). The set of all non-dominated solutions is called the Pareto

set, Pareto front or efficient frontier (Eiben and Smith, 2003).

For this examination, f(x) is a vector of length two (i.e. d = 2) containing

the entropy, which we want to maximize, and the cost to obtain the sample,

which we want to minimize. The decision variable x, is a 2M partitioned vec-

tor that includes M 0/1 entries representing which of the M sample locations

are included in the sample, a
∑M

i=1 xi = n partition representing the tour (i.e.

visit sequence) of the selected sample locations, and a M − n partition con-

taining the unsampled location labels from the first M entries from x and

the order is unimportant. Two inequality constraints, g(x) ≡ {g1(x), g2(x)}
were included to bound the cost between $200 and $2000 (i.e. budget re-

strictions). No cardinality constraints were included, since our interest in

the maximum entropy for a specific cost, and not for a specific sample size.

The complete formulation for this specific problem is:

x∗ = argmin
x∈S

{
f(x) ∈ Rd

∣∣∣g(x) ≥ 0,h(x) = 0
}

(4.8)

where the bi-objective vector, f(x) is:

f(x) ≡

{
f1(x), f2(x)

}
≡

{
ln(det(C[x,x])),

∑
`∈M

Pc
` +

∑
i∈M

∑
j∈M

ci,jxij

}
(4.9)
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subject to the inequality constraints vector, g(x), defined as:

g(x) ≡

{
g1(x), g2(x)

}
≡

{
f2(x)− 200.0, 2000.0− f2(x)

}
(4.10)

where Pc
` is the cost to measure the diameters and heights, and thus the vol-

ume for the sample location, (P v
` ) for pj( · ), ci,j is the cost to travel between

plot Pi and Pj, and ln(det(C[x,x])) is the logarithm of the determinant of

the covariance matrix for the M sample locations, described in Section 4.3.1.

Here, we do not examine the within-plot travel costs for stems on the same

plot, thus assuming travel time among stems within the plot is negligible.

4.4 HEURISTIC DESCRIPTION

Exact solution methods (i.e. mixed-integer programming) perform satis-

factorily for small single-objective problems (M ≤ 75), and for larger single-

objective problems, Lagrangian relaxation and branch-and-bound methods

work well (Lawler et al., 1985). For larger problems, or for problems with

multiple objectives that cannot be solved exactly, heuristic methods are com-

monly used to obtain satisfactory solutions, which includes an explosion of

work using Evolutionary Algorithms (EA) (Michalewicz and Fogel, 2004).

For small populations of potential sampling locations, exact solution meth-

ods such as linear/integer programming, can be used to obtain the set of

samples, or tour distances, that minimizes costs for a general unequal proba-

bility sample design (Knottnerus, 2003; Tillé, 2006). Once the resulting set of

potential samples is identified, enumeration can be used to obtain the Pareto

frontier between the unbiased minimum variance estimates for the popula-

tion totals and the sample cost (Gentle et al., 1997). For larger populations
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of potential sample locations (M ≥ 75 Lee (1998)), the Pareto frontier for a

general multi-objective sampling scheme can be effectively determined using

heuristic methods (de Gruijter et al., 2006). In forest planning, determina-

tion of the Pareto frontier is approximated using heuristic methods such as

Tabu Search (TS) (Hansen, 1997), Simulated Annealing (SA) (Deusen, 1999;

Nam and Park, 2000), Genetic Algorithms (GA), (Ducheyne et al., 2004),

and Evolutionary Algorithms (Stewart et al., 2004; Ducheyne et al., 2006).

We use a class of heuristics known as Evolutionary Algorithms (EA), in-

spired from Darwinian evolution, which selects, mutates and promotes candi-

date solutions based on competition, fitness, and reproductive success (Eiben

and Smith, 2003; Falcão and Borges, 2001). While similar to GA, The major

difference between GA and EA results from the use of the mutation operator.

In GA, the crossover operator is used to promote both diversification and in-

tensification, whereas EAs rely on the mutation operator alone to change

mutation parameters depending on a variety of metrics of convergence (Igel

et al., 2007), stopping (Laumanns et al., 2002), diversification (Farhang-Mehr

and Azarm, 2002), and optimality (Deb et al., 2007) criteria.

Several comprehensive reviews of multi-objective evolutionary algorithms

are available from Coello Coello (2002), Tan et al. (2005), and Deb (2001)

and all suggest that evolutionary algorithms have many advantages for high

dimensional vector valued problems with potentially highly disconnected,

non-uniformly distributed, and concave Pareto frontiers. For the TSP, evo-

lutionary algorithms have been widely examined (Michalewicz and Fogel,

2004), but in forest operations, examination of EA for both single objective

(Falcão and Borges, 2001) and multi-objective (Ducheyne et al., 2004) formu-

lations are rare. To examine the applicability, behavior, and performance of

a generalized multi-objective evolutionary algorithm (MOEA) for solving the
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Data: x, f(x),g(x),h(x)
Data: plot attributes, distance matrix and costs, constraint formulae,

software
Result: (µ+λ)-PAES Multi-Objective Evolutionary Algorithm

(Knowles and Corne, 2000)
g ← 1;
µg = ∅;
λg ← GenerateRandom();
Evaluate(λg);
µg ← UpdateParetoArchive(λg);
for g ← 2 to G do

λg ← SelectCandidatesFromArchive(µg−1);
λg ←Mutate(λg);
Evaluate(λg);
µg ← UpdateParetoArchive(λg);

end
ExportArchive(µG);

Algorithm 2: Pareto archiving multi-objective evolutionary algorithm.

formulation in Section 4.3.3, we used the evolutionary algorithm presented

by Knowles et al. (2000).

The (µ+ λ)-Pareto Archive Evolution Strategy ((µ+ λ)-PAES), requires

no assumptions about the decision maker or their preferences in the form of

weights or scaling factors to reduce the solution space to a scalar function

(Steuer, 1985). The method, presented in Algorithm 2, is an elitest strat-

egy, which guarantees convergence (Rudolph and Agapie, 2000), is simple

to program, generates λ mutations at each generation, maintains a set of µ

non-dominated solutions throughout the search, and has been shown to work

well for a multitude of Pareto front types (Tan et al., 2005).

The initial population of λ candidate solutions are generated randomly

and evaluated using the formulations presented in Section 4.3.3. The set

of initial λ candidate solutions are then added to the Pareto archive (i.e.
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µ = λ). A scalar rank is then assigned to each candidate solution, where the

rank is defined as the number of µ+λ individuals that dominate the candidate

solution. When there are no solutions that dominate the candidate solution,

(i.e. non-dominated) a rank of 0 is assigned to the candidate solution. All

candidate solutions with rank > 0 are then removed from the archive (i.e.

dominated). The remaining non-dominated (µ) candidate solutions, which

define the current Pareto frontier, are then selected for promotion and further

mutation.

Selection for promotion is performed using tournament selection where a

set of h candidate solutions enter a tournament and a single winner is selected

with probability p (Dumitrescu et al., 2000). We used deterministic binary

tournaments (h = 2, p = 1), where two solutions are selected with uniform

probability from the Pareto archive (i.e. uniform, P (Sel = 1) = 1/|µ|), and

one of two candidate solutions is selected, with a probability of one, to be

copied into the population buffer (λ) for promotion and mutation. The num-

ber of individual objectives that dominated the tournament for each candi-

date solution determined the winner with probability of one. In the event of a

tie (i.e. weakly non-dominated), the first contestant was deemed the winner.

The process of selection, promotion, and mutation is performed until some

stopping criteria is met. To simplify our examination of the heuristic, we

used a deterministic stopping criteria defined by the number of generations

(Deb, 2001).

A candidate solution (i.e. candidate plan, policy, or decision vector), can

be represented by the the partitioned vector, described in Section 4.3.3, and

a variable representing a mutation strategy, is expressed as:

xc = 〈x1, . . . , x`, . . . , xM |xM+1, . . . , xM+n, |xM+n+1, . . . , x2M , |σ〉 (4.11)
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Parameter Specification
Representation Real/Integer-valued vector
Population Size (Initial,Subsequent) 10, 7µ Candidate solutions
Generations 100
Recombination None
Mutation Strategy Parameter (σ) 95%
Parent Selection Uniform random
Tournament Type Binary deterministic (k=2,p=1)
Survivor Selection (µ+ λ)-PAES
Specialty None
Stopping Criteria 100 generations

Table. 4.1: Evolution strategy parameters.

where x1, . . . , x`, . . . , xM represents the binary decision to include P` from the

population of potential M sampling locations, xM+1, . . . , xM+n represents the

tour sequence for the included sample locations that minimizes the Hamilto-

nian cycle length of G, and xM+1, . . . , xM+n contains the elements of P not

included in the sample.

The last entry in the candidate solution, σ represents the probability of

either swapping two nodes in an existing solution (i.e. attempting to improve

the TSP problem) or exchanging a sampled/non-sampled location into or, out

of, the solution, effectively forcing a new TSP solution as a result of the new

CMESP candidate solution.

4.5 DATA AND METHODS

To examine the Pareto frontier between the maximum average sample

information content and the sample cost, a bounded 8.24 ha polygon, denoted

A, was located on the Oregon State University McDonald-Dunn Research

Forest (Figure 4.1). The boundary for A and the stem positions, T u∀k ∈ U ,
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Figure. 4.1: Stem map of ”Extendo” harvest unit with the diameter of the
stems represented with circles of proportional size. The + sym-
bols represent the locations for the population of M potential
sample locations P
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for all stems over 15 cm , were recorded using standard survey methods (Davis

et al., 1981). Attributes collected for each Tk included the species, T s
k , the

diameter at breast height T d
k , the total height, T h

k , the height to live crown

T c
k , the number of pieces in the main stem, T n

k , and surface characteristics

for each piece T s
k ∀s ∈ T n

k .

To determine the volume for each stem, T v
k all stems were merchandised

into log lengths of four m, to a two cm top, using the taper equation presented

by Kozak et al. (1968). If the stem could not be cut into a round number

of standard log lengths, any remaining stem length was bucked into a short

log no less than two m. Stems were merchandised with a stump height of

0.3 mand each log included 0.2 mof trim. For each log in the stem, the

starting and ending height of the log, the nominal length and the actual

length (nominal length plus trim), the small and large end diameters, and

the Smalian volume was recorded. For this examination, the Smalian volume

from each of the logs were then tallied and assigned to T v
k .

For this study, only Douglas-fir (psudeotsuga mensezii (Mirb. Franco))

stems were used resulting in a final count of 2053 stems with a spatial mean

density V A of 249.17 stems ha−1 . The total volume for the study area VA,

was 7560.07 m3 yielding an average stem volume of 3.68 m3 and an mean

volume density of 917.57 m3 ha−1.

For each possible sample design, theN vector of first-order inclusion prob-

abilities, π, were computed using the ”tree-concentric method” (Schreuder

et al., 1993) for each pj( · )∀j ∈ J . Common definitions of p( · ) include ”split-

plot designs” (i.e. p(D, θ1, θ2) where T is stratified into two populations

based on some diameter D, so that when T d
k ≤ D, stems are included on a

fixed-area plot, and when T d
k > D, stems are included on a variable-radius

or ”prism” plot, where θ1 is the fixed-area plot radius, and θ2 is an angle
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gauge constant, or basal area factor, that defines the radius of the inclusion

probability polygon associated with stem Tk, when T d
k ≥ D. To correct for

edge-bias, the polygon defining the probability of detection for Tk, T p
k , was

intersected with the edge of A, as described by Beers (1966).

To generate a potential network of ”transmitters of a particular message”

for all information (i.e. possible messages) within A (Caselton and Hussain,

1980), a non-aligned grid ofM potential sample locations was generated using

the spsample function in the sp package (Pebesma and Bivand, 2005) with

the nonaligned option. At these sample locations, each of the 36 sample

designs were installed and the resulting plot-level summary statistics were

obtained to determine the volume density (Pv
` ), the stem density, Pv

` , and

the number of stems measured, P n
` ∀ ` ∈ W . The covariance matrix C was

obtained by calculating the covariance of the results for V̂A at each potential

sample location P` across all 36 sample designs.

The cost of a sample s ∈ S was determined assuming the measurement

time required for each stem in the sample was considered fixed at 2 min per

stem regardless of stem size (Iles and Bell, 2004). The time to obtain a tree

count on each plot was assumed to 2 min per plot and the time required to

travel among the stems on a given plot was assumed to be one minute for

each stem. The ground velocity to travel among the plots was assumed to

be 3.2 km −1h. Sampling costs were assumed to be $60 h−1 (Iles and Bell,

2004) regardless of the activity.

4.6 RESULTS AND DISCUSSION

Since examination of sampling is traditionally not examined using this

method, we present and discuss our results by examination of the shapes of
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the Pareto frontiers, the performance of the estimates for the set of samples,

and basic sampling metrics, familiar to practitioners (e.g. mean tree count

the measurement cost/travel cost ratio), and finally the performance of the

heuristic itself.

4.6.1 Pareto Solutions

The shape of the Pareto frontier determines the potential gains available

between samples for a given cost. In Figure 4.2, the curves represent the

best possible average information to be gained from a single sample within

A, where the primary goal is to obtain the best guess of VA, regardless of

the inference type (i.e. design-based estimates or model-based predictions).

Since our interest is primarily with determining which curve, or curves, yield

the maximum average information content for a given cost, we seek the curve

with the steepest ascent.

Upon examination of the Pareto frontiers, the smallest fixed-area plots

combined with the largest BAF (i.e. largest variable radius plots and lower

tree counts), sample design p( · , 5.64, 16)), increased the information most

quickly for all diameter limits. However, examination of Figure 4.2 does not

reveal the fact that since the cost to travel for each sample is about half the

measurement costs (see Figure 4.5), the number of plots is much larger for

that sample design, than for the more ”inclusive” sample designs (i.e. larger

plot sizes), which span the entire range of plot counts included in the samples

as is evident in Figure 4.4.

The panels reveal that for sampling using the largest fixed-area plots (i.e.

p( · , 17.8, · )), the information content for all samples increased more slowly

that did samples with smaller fixed radius plots. This is most likely due to
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the fact that for those plots (i.e. the largest fixed-area plots), the gains to

be had from placing plots more closely does not increase the information as

quickly as adding more smaller plots spaced farther apart, nor does it add

information, per dollar spent obtaining that information, as quickly as plots

with slightly a smaller fixed-radius (i.e. p( · , 12.6, · )).

The informational value of the increasing the size of variable-radius plots

(i.e. prism plots) was roughly consistent across angle gauges for each fixed-

area plot size. The shape and position of the curves across each fixed-area

plot size are similar revealing that the influence of prism-size, for a given

fixed radius plot size, has little influence.

The most influential factor for the samples is revealed in the shape and

position of the lines relative to each other within a sample design panel. For

example, The bottom panels in Figure 4.2, show that for a given fixed-area

plot size (17.8 m), the slope of the trade-off of average information per dollar

spent to obtain the sample, increases as the size of the angle-gauge increases,

thus increasing the size of the variable radius plots, in turn, increasing the

number of ”prism” trees included in the sample. Conversely, as the size of

the fixed-radius plot increases, the number of stems included in the sample

likewise increases, but at a different rate than does increasing the variable-

radius plot size.

4.6.2 Estimation performance

In this section, we discuss various properties of the estimates of VA, and

associated details about the metrics commonly used to compare samples,

such as the bias, the mean tree count per plot, and the ratio of the cost to

measure the stems versus the cost to travel among the plots (Zeide, 1980).
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Since we obtained the samples that contain the optimal average information,

we only report the results for the design-based estimation of VA since this

value is the most commonly presented in the literature. It should also be

noted here that this does not preclude the same discussion of any results

presented for model-based inference, but here, we only discuss design-based

results.

4.6.2.1 Bias

Since the explicit goal was to obtain our best guess of VA, and we know

VA as a result of our census, we compared the bias of the resulting samples

against VA (i.e. VA− V̂A), for each of the 36 definitions of p( · ). It should be

noted here that our value for VA is the actual value, obtained from all stems

in the population of sample locations, and not the true stem population, as

the value is conditioned on only those stems included in the population of

sample plots. The results are presented graphically in Figure 4.3.

The bias, regardless of the definition of p( · ) is almost always positive,

except for the smallest fixed area and variable radius plots. This suggests that

when large variable radius plots (i.e. small BAF) are used for sampling VA,

the results are consistently bias which would occur as a result of biasing the

sample towards a particular strata (i.e. larger stems), rather than balancing

the samples among the strata or the fact that the population of sample

locations is limited to a very small subset of the infinitely large possible set

of sample location positions within A.
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Bias over cost
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4.6.2.2 Mean Tree Count per Plot

Another metric often examined in operational sampling is the average

number of stems measured on a plot. To examine this metric within the

formulation we present, we plotted the mean number of stems measured per

sample location, for each of the Pareto optimal sets.

For these solutions, the mean number of measurements on each plot can

be excessive as is presented in Figure 4.4 where, for the larger fixed-area

plots, the mean number of stems on each plot is about 40 stems. This high

number is not commensurate with current practices of targeting between four

and ten stems per point as is suggested in variable radius sampling (Iles and

Bell, 2004). For the smaller fixed-area plots, the mean tree counts are more

in agreement with current practices.

4.6.2.3 Measurement Cost/Travel Cost Ratio

Finally, we examine the ratio of the cost to measure the stems versus

the cost to travel among the sample locations (see Figure 4.5). Zeide (1980)

optimizes ”plot size” and travel time ”simultaneously” for a finite area so that

the total time will be minimized by expressing both the plot density and the

measure time for a square lattice. In contrast, we allowed the travel distance

to vary as a function of the next ”most valuable”plot within A. This provides

the most additional information, resulting in the simultaneous optimization

between the cost to obtain a sample and the size of the plot, as defined by

p( · ) along the Pareto frontier. While, our method is not equivalent to the

method used by (Zeide, 1980), our method makes no assumptions about the
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Mean Tree Count per Plot
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Cost versus Plot Count
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configuration of the spatial network of sample locations as being on a regular

lattice, nor does out method fix the rate at which information entering the

”communication channel” is a function of the ratio between the plot size (i.e.

p( · )) and the distance among the plots, by expressing the ratio as a function

of p( · ).

The plot in Figure 4.5 contains the ratio, plotted over the number of

sample locations, for the cost to measure all stems in a sample over the cost

to move among the plots, with time included for determine which stems are

to be included and the time required to move among the stems at the selected

sample location.

From our plots, we conclude that the optimal, as defined by the Pareto

frontier, show that the cost to measure stems is between about 1.4 and 2 times

the cost required to move among the plots for these particular solutions. This

is in contrast to the conclusions presented by (Zeide, 1980), who says, ”the

greater the distance between plots the larger they must be,”and that the plot

size is optimal when the time to travel between the plots is equal to the time

to measure the plot. While we find these general conclusions to be true in

our research as well, we differ in our conclusions, from our examination of the

Pareto frontier, that the time to measure stems on a plot, which is a function

of p( · ), should not dictate the spacing of the sample locations, especially

when we are interested in more than a single target variable, as suggested

by de Gruijter et al. (2006), or when we want to obtain samples for multiple

purposes (e.g. simulation, prediction, variogram parameter estimation).



109

4.6.3 Sample Tours

Next, we examined the proposed samples, with their associated tour

paths, for all Pareto optimal solutions. For brevity, we show only two so-

lutions where we selected the solution that contains the highest information

content to cost ratio and the solution lowest information to cost ratio, thus

representing the best and worst possible choices for samplingA. As expected,

the major differences between the two samples is evident by the number and

size of plots, the length of the tour, and the distribution of the plots with A.

The sample with the highest information-cost ratio was p(60, 5.64, 16)

representing a split plot design where all stems less than 60 cm are selected

into a plot with a fixed-radius with a plot radius of 5.64 m and stems over

60 cm are selected into a sample using the ”tree-centric” variable radius plot

where the plot radius is T d/(2×
√

16) m. While the information content for

this sample was very large, indeed, the tour for this sample is sub-optimal,

as the tour is not the least cost tour regarding the travel distances. This is

most likely due to the poorly tuned exploration and exploitation strategies

used for this problem.

The sample with the lowest information-cost ratio was p(80, 17.8, 8) rep-

resenting a split plot design where all stems less than 80 cm are selected into

a plot with a fixed-radius with a plot radius of 17.8 m and stems over 80

cm are selected into a sample using the ”tree-centric” variable radius plot

where the plot radius is T d/(2 ×
√

8) m. This resulted in only two, albeit

large plots, being taken within A.

These results, while not in complete agreement with Zeide (1980), do

reinforce the notion that many small plots are far more costly than a few

larger plots, which when the goal is to obtain the most information for a given
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cost, may be more advantageous as more than a single parameter is of interest

and the practitioner is concerned with not only total volume estimation, but

variogram parameter estimation, spatial prediction, and capital optimization.

4.6.4 Heuristic Performance

Since we ran the heuristic for each p( · ) only once, we limit the discussion

to the graphical results, presented in Figure 4.7, since we cannot make infer-

ence about the convergence properties without multiple runs or a completely

enumerated solution search/solution space to compare against.

We visually examined the number of Pareto solutions discovered over

number of generations to ascertain if the values of p( · ) influenced the rate

at which new solutions entered the Pareto archive (see Figure 4.7).

The values for p( · ) appear to influence the rate at which Pareto solu-

tions were discovered over the run of 250 generations (Figure 4.7). For the

smaller fixed area plots, the number of Pareto optimal solutions increased

more slowly, thus suggesting that for smaller plots, the search for Pareto op-

timal solutions is more difficult than for larger plot sizes. It should also be

noted here that since we ran the heuristic for only 250 generations and did

not enumerate the solution space, the exact number of solutions in the global

set, for each definition of p( · ) is unknown. In fact, at the end of the run, the

number of Pareto optimal solutions, for most definition of p( · ) continues to

increase, again suggesting that the heuristic should have been run for more

generations.
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4.7 CONCLUSIONS

In this manuscript, we determined the Pareto optimal set for a popu-

lation of sample locations and sample designs that are commonly used for

operational planning in the primary forest products supply chain. Since the

interest was not only in obtaining arbitrarily small confidence intervals (i.e.

standard errors), we used a general information theoretical metric, known as

entropy, combined with a traveling salesman problem to determine the opti-

mal trade-offs between the information content of a sample and its cost when

our interest is in future realizations of a discrete random field at unsampled

locations.

To accomplish these objectives, we examined 36 possible sample designs

installed at 38 possible sample locations to determine their ability to yield

the highest information for a given cost as a means of determining if there

was a single optimal sample design that could be used for any question asked

of the data. We found, however, that while we obtained the equivalent D-

optimal experimental design sample, our primary interest lay in obtaining

precise values of the total volume in A and data sufficient for production

planning and optimization.
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Figure. 4.7: Number of Pareto optimal solutions discovered for each of the
CMESP/TSP mutation ratios.
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5. MULTI-OBJECTIVE SUPPLY CHAIN OPTIMIZATION FOR

FOREST OPERATIONS

5.1 ABSTRACT

Given an operational boundary, a single pre-harvest survey and a daily

non-stochastic demand vector, we present a method to examine the Pareto

frontier between the maximum expected net revenue and maximum unhar-

vested area (i.e. biological reserves) for a forest operation which we express

as a non-linear mixed-integer constrained d-objective (d ≥1) minimization

problem assuming the volume density can be modeled using a simple spatial

correlation model. The expected net revenue is presented as a continuous

review inventory model (i.e. daily), with stochastic supply, non-stochastic

demand, product storage costs for undelivered volume (i.e. log yard), sal-

vage costs for perishable products (e.g. blue-stain), and unfulfilled demand

is lost (i.e. no backlogging) (Hillier and Lieberman, 1995).

We used block-kriging to refine predictions of the volume density, for

smaller partitions (i.e. blocks) of the operational area (i.e. harvest blocks),

which yielded unbiased minimum prediction error variance predictions of

daily production (i.e. m3 ha−1) and the log-yard inventory distribution (i.e.

m3). Using those values, we generate the Pareto frontier for a set of optimal

spatially explicit daily harvest schedules. To approximate the Pareto fron-

tier, we used the (µ+λ)-Pareto Archive Evolution Strategy ((µ+λ)-PAES),

presented by Knowles and Corne (2000).

To examine the effectiveness of the method, we compared the extremes of

the Pareto frontier to a ”traditional” sinuous harvest pattern as is common

in current operations. When the decision maker(s) selected the plan that
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maximized net revenue, net revenue increased by 58.65, percent and the

unharvested area increased by 23.54 percent as compared to a traditional

operation. When the plan that maximized reserves was selected, unharvested

area increased by 1473.41 percent, resulting in a decrease in net revenue of

-2.13 percent. These results demonstrate that refining the decision making

process can be beneficial to decision makers when there are competing and

possibly non-commensurate multiple objectives.

5.2 INTRODUCTION

Forest inventories, and how to manage them, often reveal sources of con-

flict among different ecosystem services customers and managers as each

manager has different customer service roles. The logging production man-

ager, faced with minimizing setup costs, production scheduling, often desires

long-term stable production runs with adequate log yard inventories to meet

demands. The log yard manager, interested in the investment in inventory,

minimizing product degradation, ensuring adequate stocking levels, prefers

frequent small orders to reduce salvage costs. The marketing manager, em-

phasizing customer service, wants no stock-outs, backlogs, with minimal lead

times, cycle times, and ample stocks to meet demands. Conversely, the fi-

nancial manager, interested in liquidity, cash flows, inventory turnover, is

often willing to accept a reasonable level of stock-out, investing in a min-

imal inventory to maximize the financial performance of the firm. Finally,

the environmental affairs manager, emphasizing environmental aspects of the

operation, wants to maintain standing inventories commensurate with certi-

fication criteria, marketing, and environmental policies.

We examine a production planning problem for a primary forest prod-
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ucts supply chain, by considering the problem as a multi-objective non-linear

mixed-integer spatially explicit ”inventory” optimization system in which a

single product (i.e. log volume) may be either produced (i.e. harvested) or

purchased to fulfill non-stochastic service levels (i.e. demands) over a finite

planning horizon of T periods (i.e. days).

The objectives are to 1) determine the trade-offs among various optimal

harvest plans (i.e. machine routes), so that the production manager may, 2)

select an optimal plan that maximizes net revenue for the financial manager,

given a set of fixed service levels (i.e. non-stochastic book orders) dictated by

the marketing manager, that 4) maximizes the un-harvested area as required

by the environmental affairs manager, such that 5) the predicted production

levels (i.e. replenishment) are the unbiased with minimum prediction error,

as requested by the log-yard manager and finally, 6) to present outputs so

that each manager can objectively assess their performance against the other

potentially competing and possibly non-commensurate objectives (e.g. $ ver-

sus unharvested area) without directly associating or imposing value on the

unharvested area.

Constraints include 1) a deterministic feasibility constraint (i.e. penalty

function), 2) a set of deterministic equality constraints that produce the unbi-

ased minimum prediction variance replenishment volumes in each period, 3)

a deterministic constraint for the unharvested area, using an area restriction

model (Weintraub and Murray, 2006, review), 4) a set of constraints to limit

the total number of cliques harvested in each period to a single clique, 5) a

set of constraints that requires the harvested clique in period t, be adjacent

to the set that defines the boundary of the current opening, and finally, 6) a

constraint to ensure the first clique harvested in A is on the boundary of A.

To present our problem, we use definitions that are consistent with multi-



123

objective optimization (Steuer, 1986), classical design-based sampling texts

(Cochran, 1977; Knottnerus, 2003; Tillé, 2006), model-based geostatistics

texts (Cressie, 1993; Wackernagel, 1998), combinatorial optimization (Lawler

et al., 1985), graph theory (Diestel, 2005), inventory theory (Hillier and

Lieberman, 1995; Porteus, 2002), and evolutionary algorithms (Eiben and

Smith, 2003). The format of the paper is to first introduce the nomencla-

ture, followed by a presentation of the problem formulation in Section 5.3.

In Section 5.4, we present a test dataset, which includes a bounded polygon

(i.e. finite area) that contains a finite population of stems (i.e. stem map)

and a set of service levels (i.e. log volume demands). Section 5.5 presents

the heuristic, developed by (Knowles and Corne, 2000), used to determine

the optimal trade-offs or efficient frontier for a set of machine paths. Our

results of the Pareto optimal production plans, heuristic performance, and a

discussion are presented in Section 5.6. Finally, we present our conclusions

in Section 5.7.

Nomenclature

Harvest Unit and Block Attributes
A A harvest unit, stand, or general operational polygon
λ(A) A function that returns the surface area of a polygon A
Ab A partition of A
λ(Ab) A function that returns the surface area of a polygon Ab

Av The total volume in A
Av Intrinsic regionalized variable over A with point support
AT

b The stems of T in Ab (Tk ∩ Ab)
Av

b The sum of T v in Ab (T v
k ∩ Ab)

Av̄
b The mean spatial density of Av

b

Ad
b The number of adjacent cutting blocks (i.e. degree of the node)
Ca

t Harvest clique a in period t (Ca
t ∈ B)
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C|a|t The number of cutting blocks in harvest clique in period t

Cv
t The volume of the harvest clique in period t (i.e.

∑C|a|t
i=1Av

b)

Tree Attributes
N The number of stems in A
T Set of N stems in A that define the population

and universe of inference
Tk Stem k in a population of N stems
T u

k Position of Tk u ∈ R2

T d
k Outside bark stem diameter at 1.3 m for Tk (i.e. DBH), in mm
T h

k Total height for Tk, in m
T v

k Total volume for Tk (T v
k = f(Tk)), in m3

T p
k The detection polygon for Tk

T πj

k The inclusion probability for Tk as a function of pj( · )
U The set of unique labels for each T
Inventory Yard Attributes
T The number of periods in the planning horizon
J The number of product classes in I
D A T vector of service levels (i.e. demands)
I A T × J matrix representing the log yard inventory
It,j Product class j ∈ (1, . . . , J), in time period t
It, · Total volume available, less salvaged volume It,j ∈ (1, . . . , J − 1),

in time period t
It,1 The replenishment volume resulting from harvesting

clique Ct in period t
I+

t The total volume stored (i.e. unsold) in period t
I−t Volume shortage in period t
Is±

t Volume salvaged in period t
Is

t Volume delivered or sold in period t

Plot Attributes
M The number of sampling locations in A
P Set of M sampling locations in A
P` Plot ` in a sample of M locations
Pu Position of P` u ∈ R2

Pv
` A realization of a regionalized random process V ,

for the total volume of plot P`

W The set of unique labels for each P
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Estimator Formulation

Aˆ̄v
b The predicted spatial average density for Ab

Av̂
b The predicted value of Av

b

Aσ̂2
v

b The prediction error variance for the predicted value of Av
b

C v̂
t The predicted volume of the harvest clique in period t (i.e.

∑C|a|t
i=1Av

b)

Cσ̂2
v

t The prediction error variance for the predicted value of Cv
b

Ik,`(D, θ1, θ2) An N ×M indicator vector or matrix for sample
inclusion of Tk at sample location P`

p( · ) A sample design function that assigns a probability of
inclusion, π, to each element of T

D Minimum T d to be included in fixed area plot or variable radius plot
θ1 Fixed area plot radius when T d ≤ D
θ2 Angle gauge constant for variable radius plots when T d > D
dk,` N ×M distance matrix from Tk to P`

h Lag or distance between Pu
i and Pu

j

Operators and Miscellaneous Notation
0 A vector of zeros
N,R,C The set of natural, real, and complex numbers
∀,∃,@,∈, /∈⊂ for all, exists, not exists, in, not in, and subset
∨,∧,¬ logical OR, AND, and NEGATION operators
fa ≺ fb Component-wise less-than vector inequality
E[ · ],V[ · ],C[ · ]Expected value, variance, and covariance operator
Gk[ · ] Heaviside operator (Osyczka, 2002)
C

′
, c

′
transpose of matrix C or vector c

C−1 Inverse of C
α Coordinates for a location (α1, α2) ∈ A
F The feasible region
S The search space ⊂ Rr+ν
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5.3 PROBLEM FORMULATION

LetA ⊂ R2, represent an operational harvest polygon with a finite bound-

ary, where the surface area, measured in ha, is λ(A). The polygon A, is

partitioned into A polygons (i.e. cutting blocks). Each cutting block Ab is

defined by a unique label and B = {1, . . . , b, . . . , A} is the set of labels that is

used to uniquely identify each cutting block. The total area of each cutting

block, measured in hectares, is denoted as λ(Ab), where
⋃
Ab

= A (Ab ⊂ R2),

and
⋂
Ab

= ∅ ∀b ∈ (1, . . . , B).

Let D ⊂ RT , represent a non-stochastic vector of target service levels for

a single product (i.e. log volume) for T periods. Service levels can represent

customer demands for a single product, a vector of products, including cat-

egorical satisfaction variables (i.e. binary ”satisfied=1 or not satisfied=0”),

probabilities of operational success, and any combination thereof. These

are typically defined by the ecosystem services manager (e.g. loads per day,

pieces per shift, $ per week, percentage of success in meeting production

goals, residual stems per stand, etc.).

The polygon A contains a finite population of N stems denoted by the

set T . Each stem Tk is defined by a unique label and U = {1, . . . , k, . . . , N}
is the set of labels that is used to uniquely identify each stem. The attributes

for each stem includes a position T u
k ∈ R2, a diameter T d

k , and volume T v
k

and are assumed to be known or measured without error. The elements of

T within each block (i.e. actuals) are denoted AT
b = Tk ∩ Ab.

Let P represent a set of M potential measurement locations placed within

A, where each measurement location (i.e. point/plot) P` is defined by a

unique label and W = {1, . . . , `, . . . ,M} is the set of labels that are used to

uniquely identify each sampling location. For this examination, each sam-
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pling location contains a fixed position vector Pu
` ∈ R2 and a volume density

observation Pv
` (i.e. m3 ha−1) that is measured without error. Again, to

reduce the notation, we shall write ` ∈ W to represent all sampling locations

in A.

Let I be a T × J matrix It,j ∈ R, where the T rows represent a vector

set of J age classes that contain the quantity of available product, and its

associated variance, in each of the j product age classes over T periods. The

log-yard inventory represents the volume that has been harvested (i.e. J = 1)

in period t, plus the volume left unsold (i.e. J = 2, . . . , J−1), and the oldest

unsold (i.e. salvage volume It,J) is the sum of the unsold volume in each of

the J − 1 class in period t − 1. The value of the residual volume in A as a

result of any retention tree policy, remains unrealized. All salvage volume in

realized at the end of period t where the salvage price represents the least

valuable product (i.e. chips).

To obtain Av̂
b from a single pre-harvest survey, we assume Av(α) is a re-

gionalized variable or function defined by a random process on the domain

A for point sample support where Av(α) produces a density (i.e. m3 ha−1) at

some point location α ∈ A (Armstrong, 1998; Wackernagel, 1998; de Grui-

jter et al., 2006). This assumption accounts for both local irregularities (e.g.

randomness) and a structured aspect (e.g. large scale tendencies) and that,

for any distance |h| = |ui − uj|, the distribution of the random variables

V (u1), V (u2), . . . , V (uk) is assumed to be the same as V (u1 + h), V (u2 +

h), . . . , V (uk + h) for the first two moments (i.e. constant mean and co-

variance) (Reed and Burkhart, 1985). These two assumptions, known as

second-order stationarity, are critical in determining the optimal weights so

that the prediction at some unsampled location u0, over a region Ab, is un-

biased (E[Av̂ − Av] = 0) and the error or prediction variance (V[Av̂ − Av])
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is minimum (Armstrong, 1998).

In forest operations, it is common to conduct a pre-harvest survey where

the sampling unit is the individual stem Tk and all sample units that are

observed, taken collectively, is referred to as a sample (Tillé, 2006). A general

function p( · ), commonly referred to as a sample design or plot design in

forest sampling, assigns an inclusion probability to each stem Tk for each

unique combination of T and p( · ) (de Gruijter et al., 2006; Tillé, 2006).

The weight used to obtain estimates or predictions of target parameters is

then the inverse of the inclusion probability (Husch et al., 1982; Shiver and

Borders, 1996). Common definitions of p( · ) include ”split-plot designs” (i.e.

p( · ) = f(D, θ1, θ2)) where T is stratified into two populations based on some

diameter D, so that when T d
k ≤ D, stems are included on a fixed-area plot,

and when T d
k > D, stems are included on a variable-radius or ”prism” plot,

where θ1 is the fixed-area plot radius, and θ2 is an angle gauge constant, or

basal area factor, that defines the radius of the inclusion probability polygon

associated with stem Tk, when T d
k ≥ D.

Finally, given only the harvest unit boundary, A, a vector of required

service levels (i.e. demands), D and a single pre-harvest sample, P , from p( · )

and T , a supply chain optimization problem can be expressed as a general

non-linear constrained deterministic d-objective problem (d ≥1) formulation

(Karush, 1939; Kuhn and Tucker, 1951; Osyczka, 2002; Coello Coello, 2002):

x∗ = argmin
x∈S

{
f(x) ∈ Rd

∣∣∣g(x) ≥ 0,h(x) = 0
}

(5.1)

where the goal is to obtain the arguments x∗ that yield the minimum f , a

vector of d-objectives, subject to g, a vector of K inequality constraints, and

h, a vector of M equality constraints and the fitness of any candidate solution

x can be evaluated directly from the functions f , g, and h.
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The feasible region F is a subset of the entire search space S ⊂ Rr and

F ⊆ S. For an inequality constraint that satisfies gk(x) = 0, then the

inequality k is active at x. All equality constraints hm(x) are considered

active at all values of F , regardless of the value of x (Bishop, 2006).

For potentially competing and possibly non-commensurate objectives (d ≥
2), an objective vector fa is said to dominate another objective vector fb, de-

noted by fa ≺ fb (component-wise), if and only if:

fa,i ≤ fb,i ∀ i ∈ {1, . . . , d} ∧ fa,j < fb,j ∃ j ∈ {1, . . . , d} (5.2)

In words, an objective vector is called non-dominated if there are no other

objective vectors that can increase the value of any one of the d objective

functions without decreasing the value of another of the d objective functions.

The set of all non-dominated solutions is called the Pareto set, Pareto front

or efficient frontier (Eiben and Smith, 2003).

When all of the inputs and outputs are non-stochastic, Equations (5.1)

and (5.2) can be used to determine the Pareto optimal policies which satisfy

the goals of the decision maker (Deb, 2001a). For this problem however, the

inputs contain a combination of r fixed and known values (e.g. service levels,

sample locations, and tree measurements) and ν estimates or predictions

for fixed, but unknown population parameters (e.g. Av, Av
b , and variogram

parameters), which can be expressed by a r + ν partitioned vector:

(x, ξ) = (x1, x2, . . . , xr, ξr+1, ξr+2, . . . , ξr+ν) (5.3)

where the input values x1, x2, . . . , xr are the fixed and known datum and

ξr+1, ξr+2, . . . , ξr+ν are random variables, used to represent a guess for the

last ν fixed, but unknown inputs, given the first r fixed and known values

of the data. When an optimization problem contains fixed, but unknown
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values, represented by a random vector for some subset of the inputs, the

resulting formulation is a stochastic optimization problem (Gen and Cheng,

1997).

A stochastic optimization problem can then be expressed by letting ξ =

(ξr+1, ξr+2, . . . , ξr+ν) be the random vector of fixed, but unknown values, with

the joint probability mass function φ, defined by x:

φx(ξ) = φx1,...,xr(ξr+1, . . . , ξr+ν) (5.4)

Since the maximization or minimization of a random vector, or any re-

sulting function, is meaningless, Equation (5.1), now a non-linear constrained

stochastic d-objective (d ≥1) minimization problem, expressed as:

x∗ = argmin
x∈Rr+ν

{E[f(x, ξ)] ∈ Rd|E[g(x, ξ)] ≥ 0,E[h(x, ξ)] = 0} (5.5)

which can be solved using a deterministic-substitution formulation where

the goal is to obtain risk-neutral (e.g. expected value), or risk-averse (e.g.

minimum variance) optimal criterion (Marti, 2005), and E[f(x, ξ)], E[g(x, ξ)],

and E[h(x, ξ)] are estimated from x and φx(ξ) using a priori, sample, and

structural information since x contains all known information available to

the decision maker. The available information includes inputs such as stem

measurements, the boundary of the harvest area, product yield predictions,

general forest conditions, spatial relationships, current management policies,

desired objectives, constraints, and any functions thereof.

For this problem, we are interested in risk-neutral solutions and assume

that the expected values can be estimated without bias (Marti, 2005), which

we describe below, and so, to conserve notation, we will express the deter-
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ministic substitution problem using the general formulation:

x∗ = argmin
x∈Rr+ν

{
f(x, ξ̂) ∈ Rd|g(x, ξ̂) ≥ 0,h(x, ξ̂) = 0

}
(5.6)

where f , g, and h are now defined as statistical or econometric models of the

data (White, 1999; Konishi and Kitagawa, 2008).

Here, the elements of the objective vector, f , are:

f(x, ξ̂) = (f1(x, ξ̂), f2(x, ξ̂), f3(x, ξ̂)) (5.7)

where the first objective, f1, is to minimize the constraint violations so that

an objective vector, for any given candidate solution, is as close as possible

to, or is within the feasible region (Osyczka, 2002). Specifically, the first

objective function is expressed as:

f1(x, ξ̂) ≡
M∑

m=1

[hm(x, ξ̂)]2 +
K∑

k=1

Gk[gk(x, ξ̂)]2 (5.8)

where Gk is defined as:

Gk =

{
0 for gk(x, ξ̂) ≥ 0

1 for gk(x, ξ̂) < 0
(5.9)

so that when the predicted value of the first objective equals zero (i.e. f1(x, ξ̂) =

0, the candidate solution yields an objective vector f(x, ξ̂) within, or on the

boundary of the feasible region F .

The second objective function, f2, is to maximize the unbiased, mini-

mum prediction error variance net revenue for the operation, which we model

as a continuous review ”first-in, first-out” inventory, with stochastic supply

(i.e. predicted harvest or replenishment volumes), given independent non-

stochastic demands, with product storage costs for undelivered volume, and



132

perishable products must be realized upon expiration (i.e. salvage value),

with no backlogging (i.e. shortages incur additional costs). For this problem,

we assume the cycle length is a single day, over the finite planning horizon of

T periods (Tersine, 1988; Hillier and Lieberman, 1995). The second objective

function is expressed as:

f2(x, ξ̂) ≡
T∑

t=1

β1(t) max
(
Dt,

J−1∑
j=1

It,j

)
+

T∑
t=1

β2(t) max
(
0, It,J

)
−

T∑
t=1

β3(t) max
(
0,

J−1∑
j=1

It,j−Dt

)
−

T∑
t=1

β4(t) max
(
0, Dt−

J−1∑
j=1

It,j

)
−

T∑
t=1

β5(t)It,1

(5.10)

where β1(t) and β2(t) are the sales and salvage prices (i.e. $ m−3), β3(t),

β4(t), and β5(t) are the storage (i.e. $ m−3d−1), shortage costs (i.e. $ m−3),

and production costs (i.e. $ m−3), Dt is the demand level in period t (i.e.

m3d−1),
∑J−1

j=1 It,j is the volume available to fill the demand (i.e. m3) from

the J − 1 product classes, It,J is the salvage product class volume (i.e. m3),

and It,1 is the volume harvested in period t (i.e. m3), resulting from the

harvest of clique t. The values β are presented in Table 5.2.

The first and second terms in Equation (5.10) represent the volume sold

and volume salvaged in period t, respectively. The first term represents the

larger of the demand or if short, the volume currently within the available

inventory that can be shipped, in period t. The second term represents

the volume in age class J , period t that must be realized in period t as a

consequence of product deterioration.

The last three terms represent the storage, shortage, and production costs.

The third term in Equation (5.10) represents the volume that remains after

meeting Dt (i.e. storage). If all of the demand is met, and there remains
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volume in the inventory, the remaining volume must be stored for one more

period (i.e. day). The fourth term represents the unmet demand in period t,

and since our model does not permit back-logging (i.e. demand is lost), we

must incur the cost of not meeting demand, in the form of potentially lost

future sales, or demand is either met by another vendor (i.e. competitor),

priority shipment costs, or general loss in revenue. The last term represents

the production, or logging, costs which include the cost to fall, buck, yard,

load and transport the volume from the stump in Ab, to the mill (i.e. delivery

point).

The third objective is to maximize the unharvested area in A, expressed

as:

f3(x, ξ̂) ≡ λ(CT ) (5.11)

where λ(CT ) denotes the surface area (i.e. ha) for the cliques assigned to

period T , the last period, which in this problem, remains unharvested.

To obtain the unbiased minimum prediction variance product volume in

each potential cutting block, (i.e. Av̂
b), A can be partitioned into B smaller

potential cutting blocks. Then for each potential cutting block, a set of

block-kriging equations for Av
b can be expressed as:


Ĉ1,1 . . . Ĉ1,M 1

...
. . .

...
...

ĈM,1 . . . ĈM,M 1
1 . . . 1 0



Aω1

b
...
AωM

b

Aλ
b

−

Ĉ1,M

...

Ĉn,M

1

 =


0
...
0
0

 ∀ Ab ∈ A (5.12)

or more compactly as:

CAω
b −D = 0 ∀ Ab ∈ A (5.13)



134

where Aω
b is the vector of block- kriging weights for production block Ab,

λb is the sum of the kriging weights, which when Av̄
b is unknown, must sum

to one, C is the covariance matrix of the volume density realizations (i.e.

observations) and D is the vector of the covariances at the sample points

themselves, that is, C(h) = 0 where h is the distance between sample points,

and 0 is a n + 1 vector of zeros (Isaaks and Srivastava, 1989; Armstrong,

1998; Armstrong and Champigny, 1989).

For each block in A, a set of these constraints generates a system of n+1

equations that can be easily solved for C−1 to obtain the weights Aω
b :

Aω
b = C−1D ∀ Ab ∈ A (5.14)

provided C is a positive definite function (x′Ax > 0;A,x ∈ Cn), where the

resulting values for Aω
b produce the unbiased predictions with the minimum

prediction variance for Av̂
b (Cressie, 1993).

Finally, the predicted volume for a set of harvested cutting blocks (i.e.

harvest clique) can then be expressed as:

C v̂
t =

|Ct|∑
i=1

Av̂
i (5.15)

where C v̂
t is the total volume from the set of harvest cliques in period t, |Ct|

represents the number of potential cutting blocks included in harvest clique

t, which need not be contiguous, and Av̂
i represents the unbiased, minimum

prediction error predicted total volume in Ab.

Using these predicted cutting block volumes, grouped together by a set

of harvest cliques, a set of identity equations (i.e. equality constraints) can

generated to represent the inventory replenishment, salvage, storage, and

shortage, as:
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h1(x, ξ̂) ≡ It, · −
∑J−1

j=1 It,j = 0 (5.16)

h2(x, ξ̂) ≡ Is
t −max

(
Dt,

∑J−1
j=1 It,j

)
= 0 ∀t ∈ (1, . . . , T − 1)(5.17)

h3(x, ξ̂) ≡ Is±
t −max

(
0, It,J

)
= 0 ∀t ∈ (1, . . . , T − 1)(5.18)

h4(x, ξ̂) ≡ I+
t −max

(
0,

∑J−1
j=1 It,j −Dt

)
= 0 ∀t ∈ (1, . . . , T − 1)(5.19)

h5(x, ξ̂) ≡ I−t −max
(
0, Dt −

∑J−1
j=1 It,j

)
= 0 ∀t ∈ (1, . . . , T − 1)(5.20)

h6(x, ξ̂) ≡ It+j,j =

{∑t=1
T

∑j=1
J−1 It,1 if i+ j < T

0 elsewhere
= 0 ∀t ∈ (1, . . . , T − 1)(5.21)

where Equation (5.16) defines the log-yard inventory available for shipping

to the customer. Equations (5.17), (5.18), (5.19), and (5.20) are described

above. Equation (5.21) describes the inventory level after the volume avail-

able has been shipped.

To meet the criteria that the initial harvest clique contains a potential

cutting block on the boundary of A, and that subsequent harvest cliques

are adjacent to the opening, defined by ∪t
i=1Ci, an adjacency list for each

potential cutting block is required. Here, we define adjacency as strong adja-

cency, which requires two adjacent potential cutting blocks share more than

a single common point. The equation to ensure the harvest cliques meet the

constraints can be expressed as:

g1(x, ξ̂) ≡ 3|Ct| >
∑|Ct|

j=1Ad
j = 0 (5.22)

where |Ct| defines the harvest clique in period t, and the coefficient 3 rep-

resents a maximum number of adjacent cutting blocks, developed from a

triangulation (described below).
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Finally, an adjacency constraint to restrict the cliques that border the

current opening is required so that all previous harvested cliques are com-

bined into a single ”opening”clique. For each period, the ”opening”clique was

then created as the sum of the cutting blocks from the previously harvested

cliques.

5.4 DATA AND METHODS
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Figure. 5.1: Stem map of the ”Extendo” harvest unit (i.e. T ∩ A) with the
diameter of the stems (i.e. T d

k ) represented with circles of pro-
portional size.

To examine the method for obtaining a set of optimal harvest plans, and

thus approximate the Pareto frontier between the net revenue and the area

left unharvested, a bounded 8.24 ha polygon, denoted A, was located on the

Oregon State University McDonald-Dunn Research Forest (Figure 5.1). The
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Figure. 5.2: The ”Extendo” stem map displaying the production blocks, the
locations of the pre-harvest sample. Boundary cutting blocks
are light grey, with the cutting blocks that are adjacent to only
one block, shaded in dark grey. Non-shaded (i.e. interior blocks)
cannot be harvested first, but can be included in a harvest clique
that also includes the boundary blocks.
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boundary for A and the stem positions, T u ∀ k ∈ U , for all stems over 15 cm,

were recorded using standard survey methods (Davis et al., 1981). Attributes

collected for each Tk included the species, T s
k , the diameter at breast height

T d
k , the total height, T h

k , the height to live crown T c
k .

To determine the volume for each stem, T v
k , all stems were ”merchandised”

into log lengths of 4 m, to a 2 cm top, using the taper equation presented

by Kozak et al. (1968). If the stem could not be cut into a round number of

standard log lengths, any remaining stem length was bucked into a short log

no less than 2 m in length. Stems were merchandised with a stump height

of 0.3 m and each log included 0.2 m of trim. For each log in the stem,

the starting and ending height of the log, the nominal length and the actual

length (nominal length plus trim), the small and large end diameters, and the

Smalian volume were recorded. For this examination, the Smalian volume

from each of the logs were then tallied and assigned to T v
k .

For this study, only Douglas-fir (psudeotsuga mensezii (Mirb. Franco))

stems were used (i.e. T s
k ∈ {DF}; k ∈ U) resulting in a final count of 2053

stems with a spatial mean density (i.e. AT λ(A)−1 of 249.17 stems ha−1 . The

total volume for the study area Av, was 7560.07 m3 yielding an average stem

volume of 3.68 m3 and a spatial mean volume density of 917.57 m3 ha−1,

denoted Av̄.

We simulated the installation of a single pre-harvest sample from A where

the goal was to obtain the maximum constrained entropy sample (i.e. D-

optimal experimental design sample (see Lee, 1998)), where the sample lo-

cations were selected from a set of potential sample locations. The set of

potential sample locations were obtained using a non-aligned grid pattern

(Figure 5.2). We used the spsample function in the sp package (Pebesma

and Bivand, 2005), to determine the sample locations (i.e. Pu
` ∀ ` ∈ W).
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The sample design for this examination, p( · ) ≡ p(D = 20, θ1 = 5.64, θ2 = 4),

meant that all detectable stems under 20 cm were tallied on a circular fixed-

area plot with a radius of 5.64 m, and all detectable stems over 20 cm DBH

where tallied using a BAF of 4 m3ha−1.

A total of 38 plots were installed with the predicted total volume of

7350.35 m3, with a minimized prediction error variance of 7350.35 resulting

in a bias of 209.72 m3. The mean volume density, denoted Aˆ̄v
b , corrected for

”edge-bias”using the method described by (Beers, 1966), was 858.76 m3 ha−1.

The boundaries for the set of potential cutting blocks were developed

using Delaunay triangulation (Shewchuk, 1996; Okabe et al., 2000) which

generated 67 potential cutting blocks to be grouped into the harvest cliques.

We then used irregular block-kriging (Armstrong, 1998) on the resulting set

of potential cutting blocks, using a 12 m× 20 m grid of prediction locations

in A where the prediction grid was intersected with boundary of each Ab, in

order to compute Aˆ̄v
b , the predicted spatial average density for each potential

cutting block (Montes et al., 2005). For C, we assumed an isotropic two-

parameter exponential theoretical variogram model:

γ(h) = c
(
1− exp

(−|h|
a

))
(5.23)

where γ(h) = C(0)−C(h), C is the covariance between two sample locations

P v
i and P v

j (Goovaerts, 1997), and a and c represent unknown, but fixed

population parameters (Cressie, 1993) to be estimated from the single pre-

harvest sample P . We used a maximum range of 1800 m and a distance

interval width of 100 m. The variogram parameter estimates and fit statistics

are presented in Table 5.2. Once the value of Aˆ̄v
b was obtained, Av̂

b was

computed as the product of Av̄
b ·λ(Ab). The demand vector, D, presented

graphically in Figure 5.3, required a total of 7350 m3.
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All calculations to obtain the unknown inputs (i.e. ξ̂) were performed

prior to solving the operational plans, using R (Ihaka and Gentleman, 1996).

The sample locations obtained using the spsample function in the sp package

(Pebesma and Bivand, 2005), the grid generation function gridcentres from

the spatstat package was used and for the variogram estimation and kriging

prediction functions, we used the gstat package (Pebesma, 2004).

5.5 HEURISTIC DESCRIPTION

While exact solution methods for spatially explicit planning formulations

have been presented for problems with two objectives (Tóth et al., 2006),

examples of exact solution methods for complex problems are rare. For mul-

tiple objective formulations, heuristic methods such as Tabu Search (TS)

(Hansen, 1997), Simulated Annealing (SA) (Deusen, 1999; Nam and Park,

2000), Genetic Algorithms (GA), (Ducheyne et al., 2004), and Evolutionary

Algorithms (Stewart et al., 2004; Ducheyne et al., 2006) where d ≥ 2, while

rare in forest planning, show promise.

We used a class of heuristics known as Evolutionary Algorithms (EA), in-

spired from Darwinian evolution, which selects, mutates and promotes candi-

date solutions based on competition, fitness, and reproductive success (Eiben

and Smith, 2003; Falcão and Borges, 2001). The major difference between

GA and EA results from the use of the mutation operator. In GA, the

crossover operator is used to promote both diversification and intensifica-

tion, whereas EAs rely on the mutation operator alone to change mutation

parameters depending on a variety of metrics such as convergence (Igel et al.,

2007), stopping (Laumanns et al., 2002), diversification (Farhang-Mehr and

Azarm, 2002), and optimality (Deb et al., 2007) criteria.
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Figure. 5.3: The vector of demands D.
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Several comprehensive reviews of multi-objective evolutionary algorithms

are available from Coello Coello (2002), Tan et al. (2005), and Deb (2001a)

and all suggest that evolutionary algorithms have many advantages for high

dimensional vector valued problems with potentially highly disconnected,

non-uniformly distributed, and concave Pareto frontiers. In forest planning

however, examination of EA for single objective (Falcão and Borges, 2001)

and multi-objective (Ducheyne et al., 2004) formulations, while rare, show

promise. To examine the applicability, behavior, and performance of a gen-

eralized multi-objective evolutionary algorithm (MOEA), the evolutionary

algorithm presented by (Knowles and Corne, 2000) was used to solve the

formulation in Section 5.3.

The (µ+ λ)-Pareto Archive Evolution Strategy ((µ+ λ)-PAES), requires

no assumptions about the decision maker or their preferences in the form of

weights or scaling factors to reduce the solution space to a scalar function

(Steuer, 1985). The method, presented in Algorithm 3, is an elitest strategy,

which guarantees convergence (Rudolph and Agapie, 2000), is relatively sim-

ple to program, generates λ new mutations at each generation, maintains a

set of µ non-dominated solutions throughout the search, and has been shown

to work well for multitude of Pareto front types (Tan et al., 2005).

The initial population of λ candidate solutions are generated randomly,

potentially repaired, and evaluated using the formulations presented in Sec-

tion 5.3. The set of initial λ candidate solutions are then added to the Pareto

archive (i.e. µ = λ). A scalar rank is then assigned to each candidate so-

lution, where the rank is defined as the number of µ + λ individuals that

dominate the candidate solution. When there are no solutions that dom-

inate the candidate solution, (i.e. non-dominated) a rank of 0 is assigned

to the candidate solution. All candidate solutions with rank > 0 are then
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Data: x, ξ̂, f(x, ξ̂),g(x, ξ̂),h(x, ξ̂)
Data: yield streams, adjacency list(matrix), constraint formulae,

software
Result: (µ+λ)-PAES Multi-Objective Evolutionary Algorithm

(Knowles and Corne, 2000)
g ← 1;
µg = ∅;
λg ← GenerateRandom();
Evaluate(λg);
µg ← UpdateParetoArchive(λg);
for g ← 2 to G do

λg ← SelectCandidatesFromArchive(µg−1);
λg ←Mutate(λg);
Evaluate(λg);
µg ← UpdateParetoArchive(λg);

end
ExportArchive(µG);

Algorithm 3: Pareto archiving multi-objective evolutionary algorithm.

removed from the archive (i.e. dominated). The remaining non-dominated

(µ) candidate solutions, which define the current Pareto frontier, are then

selected for promotion and further mutation.

Selection for promotion is performed using tournament selection where a

set of h candidate solutions enter a tournament and a single winner is selected

with probability p (Dumitrescu et al., 2000). We used deterministic binary

tournaments (h = 2, p = 1), where two solutions are selected with uniform

probability from the Pareto archive (i.e. uniform, P (Sel = 1) = 1/|µ|),
and one of two candidate solutions is selected, with a probability of one, to

be copied into the population buffer (λ) for promotion and mutation. The

number of individual objectives that dominated the tournament for each

candidate solution determined the winner with probability of one. In the

event of a tie (i.e. weakly non-dominated), the first solution is selected with
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a probability of 1
2
. The process of selection, promotion, and mutation is

performed until some stopping criteria is met. For this manuscript, we used

a deterministic stopping criteria defined by the number of generations (Deb,

2001a).

Since a portion of the input data for this problem is a constant (fixed

either known or unknown) regardless of the values of the decision variables

needed to evaluate a specific candidate solution, the decision vector included

only variables for the harvest period for Ab:

xc = 〈d1, . . . , di, . . . , dB, σ〉 (5.24)

where d1, . . . , di, . . . , dB represents the harvest/reserve day in which to assign

cutting block i and cutting blocks assigned to the reserve period (i.e. last day)

di = T . The last entry in the candidate solution, σ represents a mutation

strategy.

We implemented two mutation strategies (i.e. σ ∈ (RANDOM CLUSTERING,

RANDOM RESTART)). The first mutation strategy was to generate a completely

random solution, beginning with a new clustering of the potential cutting

blocks and to reassign the harvest cliques beginning with period one. The

second mutation strategy was to re-assign harvest cliques t+1, . . . , T , given a

random starting period t where the harvested cliques were fixed up to period

t. We used Baldwinian repair (Ishibuchi et al., 2005), so the candidate solu-

tion was feasible regarding the adjacency constraint, described in Equation

(5.22). Finally, to examine the performance of the search, we ran the heuris-

tic for 5000 generations, 184 times using the strategy parameters defined in

Table 5.1.
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Parameter Specification
Representation Real/Integer-valued vector
Population size 7µ Candidate solutions
Generations 5000
Recombination None
Mutation Random clustering and random starts
Parent Selection Uniform random
Tournament type Binary deterministic (k=2,p=1)
Survivor Selection (µ+ λ)-PAES
Specialty Baldwinian repair
Stopping Criteria 5000 generations

Table. 5.1: Evolution strategy parameters.

Input or Parameter Value Units
T 21 days
J 5 days
D (D1,D2, . . . ,DT−1) m3

DT λ(CT ) ha
D 20 cm
θ1 5.64 m
θ2 4 m−2ha−1

a 344149.7 m2

c 800 m
Sales Price 60.0 $ m−3

Salvage Price 5.0 $ m−3

Production Costs 20.0 $ m−3

Storage Costs 3.0 $ m−3d−1

Shortage Costs 40.0 $ m−3

Table. 5.2: Inputs.
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5.6 RESULTS AND DISCUSSION

5.6.1 Heuristic Performance

To examine the behavior and performance of the heuristic, we performed

100 replications, and examined the box-and-whisker plots of the objective

function distributions as as suggested by Deb (2001b). While others have

presented much more complete heuristic performance metrics for Pareto set

convergence (Igel et al., 2007), stopping (Laumanns et al., 2002), diversifi-

cation (Farhang-Mehr and Azarm, 2002), and optimality (Deb et al., 2007)

criteria, we limit our discussion to visual examination of the box-and-whisker

plots of the maximum objective function values, presented in Figure 5.4.

Here, we only present the first 100 generations for brevity.

During the early stages of the search, both the median net revenue and the

maximum unharvested area increased rapidly, and then slowed to a steady

increase over the 5000 generations. The variation for both the maximum net

revenue and maximum unharvested area were relatively equal throughout the

entire search for each of the respective objectives. The variance of the net

revenue, however, was larger than the variance for the maximum unharvested

area as can be seen by the limits of the first and third quartiles in Figure

5.4. The maximum value of the net revenue (i.e. the top whisker), in each

generation, increased much more rapidly than did the mean, whereas the

maximum for the maximum unharvested area increased more proportional

to the mean of the runs.

While the mutation rate and population size parameters are typically the

variables of interest in evolutionary computation research (Bartz-Beielstein,

2006), we fixed the mutation rate, mutation types, and population sizes (i.e.

7µ) each run to: 1) minimize potentially confounding factors that might arise
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from dynamically modifying the mutation rate and population sizes, and 2)

because, for a given population size, there are endless methods in which the

mutation rate could have been modified.

5.6.2 Operational Plans

To compare the tradeoffs between maximizing net revenue and maximiz-

ing the unharvested area, which represents the two extremes of the Pareto

set, we present a detailed discussion of the Pareto solution that maximizes

net revenue, the Pareto solution that maximized the unharvested area, and

for comparison, we include a compromise between the two, representing a

harvest pattern similar to current practices.

Since our goal was to determine if increasing the resolution of the decision

making process increased our ability to make better decisions by detect salient

properties of the solution space (i.e. increase net revenue, the unharvested

area, or both), we examined specific differences among solutions for a single

Pareto set by selecting the replication with the highest number of discovered

Pareto solutions. Figure 5.5 presents the resulting Pareto frontiers from

the 100 replications, and the selected Pareto frontier with the associated

spatially explicit harvest plans for the extremes of the frontier. Figure 5.6

graphically presents the log yard inventory dynamics (i.e. cumulative net

revenue, shipped volume, stored volume, and cumulative shortages) over the

planning horizon.

The traditional harvest pattern, based on the spatial mean (i.e. Av̄λ(A)),

without the incorporation of spatial correlation in the predicted volumes, is

presented in the lower left map in Figure 5.5. The plan, developed assuming

the volume density is uniform throughout A, begins in the lower left corner,
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Figure. 5.6: Cumulative net revenue, delivered volume, log-yard inventory,
and shortage for the selected Pareto set.
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moving from left to right, reversing direction and repeating the process in

the opposite direction until. The plan, typical of current practices, leaves

the unharvested area in the northeast corner of A. The traditional harvest

pattern results in a net revenue of $ 179,634.56 with an unharvested area of

0.08 ha.

In Figure 5.6, the levels of inventory for the traditional plan are rep-

resented as the thick solid black line. The cumulative net revenue for the

traditional plan follows the same pattern as the maximum net revenue plan

until the mid-point of the planning horizon. The traditional plan then di-

verges from the maximum revenue plan, as storage costs (lower left Figure

5.6) increases over the planning horizon. The cumulative volume shipped

also closely matches the maximum net revenue plan until the mid point of

the planning horizon, then falls short as volume is salvaged as a consequence

of building a large log-yard inventory which cannot be sold after product

degradation.

The harvest plan that maximized net revenue (Plan 1) resulted in a net

revenue of $ 284,992.91 with an unharvested area of 0.1 ha, yielding an in-

crease in net revenue over the traditional plan of 58.65 percent and an increase

in reserve area of 23.54 percent. The plan begins in the lower right of the

harvest unit, and follows a pattern than harvests the center diagonal of the

unit, leaving the south west and north east corners for the second half of the

operation. The cumulative net revenue remained the highest throughout the

planning horizon as did the cumulative shipped volume. As would be desir-

able to the log-yard manager, marketing, and financial managers the plan

that maximized the net revenue maintained the lowest log-yard inventory

and the lowest cumulative volume shortage as well.

The harvest plan that maximized the unharvested area (i.e. Plan 16), as
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might desired by the environmental affairs manager attempting the focus on

societal goals, is presented in the upper left corner of Figure 5.5, and by the

thick light grey solid line in Figure 5.6. Plan 16) resulted in an unharvested

area of 1.33 ha yielding an increase in unharvested area over the traditional

plan of 14.73 times. Interestingly, the net revenue for Plan 16) was 175,800.71

resulting in decrease in net revenue of -2.13 percent.

The log-yard inventory for the Pareto operations (Figure 5.6), shows that

both the maximum unharvested area and the traditional harvest plan both

had larger log-yard inventories (i.e. cumulative volume in storage), higher cu-

mulative shortages, and less cumulative shipped volumes than did the maxi-

mum net revenue plan, suggesting that when there are competing objectives,

the maximization of net revenue can simultaneously increase net revenue,

while maintaining the current unharvested area as well as the objectives of

the other managers. The maximum unharvested area also maintains the

same net revenue curve as the maximum net revenue, until the log-yard

manager, unable to change ”fate”, is forced to then incur shortages, fall be-

hind in shipments, and must maintain the largest log-yard inventory, making

this maximization of that objective questionable if the organization wants to

remain competitive against a traditional operating plan.

Finally, when some intermediate option is selected for implementation

(i.e. more unharvested area and less net revenue), increases in shortages

and log-yard inventories, as well as decreases in net revenue and cumulative

shipped volume are possible as is evident by the dashed lines in Figure 5.6.

These alternatives, when examined simultaneously against each of the other

plans, yields a more informed decision regarding the competing objectives

than does current multi-criteria decision making practices.
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5.7 CONCLUSIONS

We presented a precision planning method to examine the trade-offs

among potentially competing and non-commensurate objectives in forest op-

erations, using a mathematical model of the resource, a heuristic search tech-

nique, and visual examination of the resulting plans from which we can select.

By making certain assumptions regarding spatial correlation within the pop-

ulation of sample plots installed as part of the pre-harvest survey, we were

able to compare the resulting set of Pareto optimal operational plans against

a traditional operational plan and found that by increasing the resolution

of the input data, assuming a simple spatial model of the volume within

the harvest unit, and efficiently exploring the solution space, we were able

to increase both objective function values over the values resulting from a

traditional plan as well as provide an objective assessment of the various

management options.

The method identified a set of plans that optimized the production sched-

ule to provide stable production (e.g. logging production manager objec-

tives), maintain a small inventory, thus minimizing product degradation,

ensuring adequate stocking levels (e.g. log-yard manager objectives). The

pareto optimal plans also allow the production manager to meet the cumu-

lative customer service levels, minimize, or eliminate, shortages while main-

taining ample stocks to meet service levels (e.g. marketing manager objec-

tives), and maintain a sufficient unharvested area similar to or better than

traditional practices (e.g. environmental affairs manager objectives).

While the problem examined here was small, the advantages of this method

can be examined for larger problems, problems with multiple harvest areas,

and for problems with additional metrics are included in the objective vector
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(e.g. financial, ecological, and social objectives). Finally, as our focus was on

the problem formulation and not the solution method specifically, we realize

the need to examine mutation operators, selection operators, and methods

to visualize Pareto frontiers in forest planning problems is large indeed, as

there are many complex relationships among input data, decision variables,

and policies defined by f , g, and h and is the subject of future research.
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6. CONCLUSIONS

This collection of manuscripts completes the initial work set forth by re-

searchers at Oregon State University, to develop a framework for the exami-

nation, formulation, study of, management, and optimization of the primary

forest products supply chain. To provide these tools, these manuscripts make

original contributions to the following subject areas:

• Multiple-objective Optimization

– A general framework for non-linear mixed-integer multi-objective

NP-hard planning problems with deterministic and stochastic el-

ements;

– The use of Multi-Objective Evolutionary Algorithms (MOEA),

in forest engineering, forest sampling, and forest operations for

examination of the trade-offs among potentially competing and

possibly non-commensurate objectives;

– Basic research regarding evolution strategy parameter values and

their influence on the performance of the search of the solution

space; and

– A completely enumerated non-trivial (i.e. spatially correlated) ex-

ample problem which can be used to examine and compare multi-

objective solution search techniques.

• Forest Planning

– Examination of design-based and model-based inference for the

estimation or prediction of missing values which are then used for

planning, simulation, and optimization, of forest operations;
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– The inclusion of simple spatial correlation structures to assess for-

est product availability in an operational environment;

– The examination of various spatial correlation models, from which

more precise predictions of forest products can be obtained;

– The application of entropy in forest sampling where the goal is to

obtain data from a finite region for multiple purposes;

– Optimal experimental design sampling, expressed as a sample data

acquisition problem for supply chain optimization activities.

• Supply-chain Optimization

– A framework that can combine potentially disparate forest op-

erations (e.g. production and log yard inventory) into a single

problem where the practitioner can examine the consequences of

various decisions objectively;

– A framework that provides ability to combine deterministic and

stochastic inputs and outputs (i.e. predictions/estimates of forest

inventories, probability maximization problems, single and joint-

chance constraint problems), and general non-linear mixed-integer

multi-objective planning problems into a single framework;

– Examination and communication of the Pareto set for high dimen-

sional solution spaces (i.e. many objectives), which are common

in forest engineering; and

As these manuscripts represent the combination of concepts from a va-

riety of disciplines, as is often the case in forest engineering, I have made

every attempt to unify the nomenclature from the various disciplines, when

possible, to address the combination of biological, quantitative, managerial
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and social sciences applied to the management and conservation of forest

resources where the goal is to produce some desired societal, biological, or

economic objectives. It is by no means complete.

While the problems examined within these manuscripts were relatively

small, the advantages of these methods are clear when applied to larger

problems with multiple financial, ecological, and social objectives. This then

presents the need to examine mutation operators, selection operators, stop-

ping criteria, Pareto diversity measures, convergence criteria, and visualiza-

tion methods for high-dimensional Pareto frontiers, as large forest planning

problems contain complex relationships among input data, decision variables,

and policies, defined by f , g, and h, and is the subject of future research.

Finally, as the focus was on problem formulation, solution techniques,

and presentation methods in the individual manuscripts, the collection of

the manuscripts provide tools for practitioners wanting to optimize forest

ecosystem service supply chains, with methods to query, formulate, search

for, solve, and disseminate information about the quality and quantity of

services forest ecosystem managers can and do provide.



163

BIBLIOGRAPHY

Abbas, A. E. and Holmes, S. P. (2004). Bioinformatics and management sci-
ence: some common tools and techniques. Operations Research, 52(2):165–
190.

Armstrong, M. (1998). Basic Linear Geostatistics. Springer.

Armstrong, M. and Champigny, N. (1989). A study on kriging on small
blocks. Canadian Institute of Mining Bulletin, 82(923):128–133.

Avery, T. E. and Burkhart, H. E. (2003). Forest measurements, 5th Ed.
McGraw-Hill.

Bang-Jensen, J., Chiarandini, M., Goegebeur, Y., and Jørgensen, B. (2007).
Mixed models for the analysis of local search components. In Stützle, T.,
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APPENDIX A

THE SEARCH SPACE (S) AND THE GLOBAL PARETO SET FOR
THE EXAMPLE PROBLEM

For the example problem presented in this manuscript, the cardinality of S,

|S|, is defined by the number of partitions for each cutting schedule permu-

tation.

Since the eight stems must be assigned to one of four non-empty sets (i.e.

harvest on day one, two or three, or assigned as a residual stem), the total

number of ways of partitioning a set of n elements into m non-empty subsets

is defined by the Stirling number of the second kind, denoted by S(n, k),

where S(n, k) is defined as:

S(n, k) =
1

k!

k∑
i=1

(−1)i

(
k

i

)
(k − i)n (A.1)

and
(

k
i

)
is the binomial coefficient.

Each permutation of n stems defines a unique assignment sequence, in

which the total number of permutations of the n stems equals n! The product

of the two terms results in the total number of possible candidate solutions,

from which the global Pareto optimal set can be determined using the meth-

ods describe in Section 2.3. For this examination, the cardinality of the input

space was S(n, k)× n! = S(8, 4)× 8! = 1701 × 40320, or 68,584,320 possible

candidate solutions. This result was verified by complete enumeration.

The total number of feasible and infeasible solutions in S were 2,949,120

and 65,635,200, respectively, constituting 4.30 and 95.70 percent of the solu-

tions in the search space. The total number of global Pareto optimal solutions

was 465, which constituted only 0.0007 percent of the solutions in S and only

0.0158 of feasible solutions in S. The low ratio of feasible solutions could in-
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dicate that a search strategy focusing on minimizing infeasibility may be

more efficient at finding Pareto optimal solutions than less directed random

searches since optimal solutions are found on the feasibility-infeasible bound-

ary of S and less optimal, yet feasible solutions would be evaluated when

searching within the feasible region.
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